draft-ietf-opsawg-capwap-extension-00.txt   draft-ietf-opsawg-capwap-extension-01.txt 
Network Working Group Y. Chen
Network Working Group Y.F. Chen Internet-Draft D. Liu
Internet-Draft D.L. Liu
Intended status: Standards Track H. Deng Intended status: Standards Track H. Deng
Expires: November 10, 2013 China Mobile Expires: November Apr, 2014 China Mobile
Lei. Zhu Lei. Zhu
Huawei Huawei
May 09, 2013 Oct 2013
CAPWAP Extension for 802.11n and Power/channel Reconfiguration CAPWAP Extension for 802.11n and Power/channel Reconfiguration
draft-ietf-opsawg-capwap-extension-00 draft-ietf-opsawg-capwap-extension-01
Abstract Abstract
CAPWAP binding for 802.11 is specified by RFC5416 and it was based on CAPWAP binding for 802.11 is specified by RFC5416 and it was based on
IEEE 802-11.2007 standard. After RFC5416 was published in 2009, IEEE 802-11.2007 standard. After RFC5416 was published in 2009,
there was several new amendent of 802.11 has been published. 802.11n there was several new amendment of 802.11 has been published.
is one of those amendent and it has been widely used in real 802.11n is one of those amendment and it has been widely used in real
deployment. This document extends the CAPWAP binding for 802.11 to deployment. This document extends the CAPWAP binding for 802.11 to
support 802.11n. support 802.11n and also defines a power and channel auto
configuration extension.
Status of This Memo Status of This Memo
This Internet-Draft is submitted in full conformance with the This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79. provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/. Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on November 10, 2013.
Copyright Notice Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
skipping to change at page 2, line 15 skipping to change at page 2, line 14
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License. described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Conventions used in this document . . . . . . . . . . . . . . 2 2. Conventions used in this document . . . . . . . . . . . . . . 2
3. CAPWAP 802.11n support . . . . . . . . . . . . . . . . . . . 2 3. CAPWAP 802.11n support . . . . . . . . . . . . . . . . . . . 2
4. CAPWAP extension for 802.11n support . . . . . . . . . . . . 3 4. CAPWAP extension for 802.11n support . . . . . . . . . . . . 3
4.1. 802.11n Radio Capability Message Element . . . . . . . . 3
4.2. 802.11n Radio Configuration Message Element . . . . . . . 4
4.3. 802.11n Station Information . . . . . . . . . . . . . . . 5
5. Power and Channel auto reconfiguration . . . . . . . . . . . 6 5. Power and Channel auto reconfiguration . . . . . . . . . . . 6
6. Security Considerations . . . . . . . . . . . . . . . . . . . 13 5.1. Scan Parameter Message Element . . . . . . . . . . . . . 7
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13 5.2. Channel Bind Message Element . . . . . . . . . . . . . . 8
8. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 13 5.3. Channel Scan Report . . . . . . . . . . . . . . . . . . . 9
5.4. Neighbor WTP Report . . . . . . . . . . . . . . . . . . . 11
6. Security Considerations . . . . . . . . . . . . . . . . . . . 12
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12
8. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 12
9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 13 9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 13
10. Normative References . . . . . . . . . . . . . . . . . . . . 13 10. Normative References . . . . . . . . . . . . . . . . . . . . 13
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 14 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 13
1. Introduction 1. Introduction
IEEE 802.11n standard was published in 2009 and it is an amendment to IEEE 802.11n standard was published in 2009 and it is an amendment to
the IEEE 802.11-2007 standard to improve network throughput. The the IEEE 802.11-2007 standard to improve network throughput. The
maximum data rate increases to 600Mbit/s physical throughput rate. maximum data rate increases to 600Mbit/s physical throughput rate.
In the physical layer, 802.11n use OFDM and MIMO to achive the high In the physical layer, 802.11n use OFDM and MIMO to achieve the high
throughput. 802.11n use multiple antennas to form antenna array throughput. 802.11n use multiple antennas to form antenna array which
which can be dynamically adjusted to imporve the signal strength and can be dynamically adjusted to improve the signal strength and extend
extend the coverage. the coverage.
There are couple of capabilities of 802.11n need to be supported by There are couple of capabilities of 802.11n need to be supported by
CAPWAP control message such as radio capability, radio configuration CAPWAP control message such as radio capability, radio configuration
and station information. and station information.
2. Conventions used in this document 2. Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT", The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119]. document are to be interpreted as described in [RFC2119].
3. CAPWAP 802.11n support 3. CAPWAP 802.11n support
IEEE 802.11n standard was published in 2009 and it is an amendment to [IEEE-802.11.2009] standard was published in 2009 and it is an
the IEEE 802.11-2007 standard to improve network throughput. The amendment of the IEEE 802.11-2007 standard to improve throughput.
maximum data rate increases to 600Mbit/s physical throughput rate. The maximum data rate increases to 600Mbit/s physical throughput
In the physical layer, 802.11n use OFDM and MIMO to achive the high rate. In the physical layer, 802.11n use OFDM and MIMO to achieve
throughput. 802.11n use multiple antennas to form antenna array the high throughput. 802.11n use multiple antennas to form antenna
which can be dynamically adjusted to imporve the signal strength and array which can be dynamically adjusted to improve the signal
extend the coverage. strength and extend the coverage.
802.11n support three modes of channel usage: 20MHz mode, 40Mhz mode 802.11n support three modes of channel usage: 20MHz mode, 40MHz mode
and mixed mode.802.11n has a new feature called channel binding. It and mixed mode.802.11n has a new feature called channel binding. It
can bind two adjacent 20MHz channel to one 40MHz channel to improve can bind two adjacent 20MHz channel to one 40MHz channel to improve
the throughput.If using 40Mhz channel configuration there will be the throughput.If using 40MHz channel configuration there will be
only one non-overlapping channel in 2.4GHz. In the large scale only one non-overlapping channel in 2.4GHz. In the large scale
deployment scenario, operator need to use 20MHz channel configuration deployment scenario, operator need to use 20MHz channel configuration
in 2.4GHz to allow more non-overlapping channels. in 2.4GHz to allow more non-overlapping channels.
In MAC layer, a new feature of 802.11n is Short Guard Interval(GI). In MAC layer, a new feature of 802.11n is Short Guard Interval(GI).
802.11a/g use 800ns guard interval between the adjacent information 802.11a/g use 800ns guard interval between the adjacent information
symbols. In 802.11n, the GI can be configured to 400nm under good symbols. In 802.11n, the GI can be configured to 400nm under good
wireless condition. wireless condition.
Another feature in 802.11 MAC layer is Block ACK. 802.11n can use Another feature in 802.11 MAC layer is Block ACK. 802.11n can use one
one ACK frame to acknowledge several MPDU receiving event. ACK frame to acknowledge several MPDU receiving event.
CAPWAP need to be extended to support the above new 802.11n features. CAPWAP need to be extended to support the above new 802.11n features.
For example, CAPWAP should allow the access controller to know the For example, CAPWAP should allow the access controller to know the
supported 802.11n features and the access controller should be able supported 802.11n features and the access controller should be able
to configure the differe channel binding modes. One possible to configure the different channel binding modes. This document
solution is to extend the CAPWAP information element for 802.11n. defines extension of the CAPWAP 802.11 binding to support 802.11n
features.
4. CAPWAP extension for 802.11n support 4. CAPWAP extension for 802.11n support
There are couple of capabilities of 802.11n need to be supported by There are three 802.11n features need to be supported by CAPWAP
CAPWAP control message such as radio capability, radio configuration 802.11 binding: 802.11n radio capability, 802.11n radio configuration
and station information. This section defines the extension of and station information. This section defines the extension of
current CAPWAP 802.11 information element to support 802.11n. current CAPWAP 802.11 binding to support 802.11n features.
1. 802.11n Radio Capability Information Element. Below is an
example of the 802.11n radio capability information element. This
802.11n radio capability information element may also be conveyed
using the IEEE 802.11 information element by carrying the IEEE 802.11
HT element information.
0 1 2 3 4.1. 802.11n Radio Capability Message Element
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Element ID | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID |SupChanl width | Power Save | ShortGi20 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ShortGi40 | HtDelyBlkack | Max Amsdu | Max RxFactor|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Min StaSpacing | HiSuppDataRate| AMPDUBufSize | HtcSupp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 20MHZ 11gMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 20MHZ 11gMCS | [RFC5416] defines IEEE 802.11 binding for CAPWAP protocol. It
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ defines IEEE 802.11 Information Element which is used to communicate
| 20MHZ 11gMCS | any IE defined in IEEE 802.11 protocol. This document defines
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 802.11n radio capability information element which is composed of the
| 20MHZ 11gMCS | IEEE 802.11 Information Element header that defined in section 6.6 of
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ [RFC5416] and the IEEE 802.11 HT information element that defined in
| 20MHZ 11aMCS | section 8.4.2.58 of [IEEE-802.11.2012]. The HT IE is carried by the
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ IEEE 802.11 information element that defined in section 6.6 of
| 20MHZ 11aMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 20MHZ 11aMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 20MHZ 11aMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 40MHZ 11gMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 40MHZ 11gMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 40MHZ 11gMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 40MHZ 11gMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 40MHZ 11aMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 40MHZ 11aMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 40MHZ 11aMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 40MHZ 11aMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: 802.11n Radio Capability Information Element [RFC5416] to form the 802.11n radio capability message element.
802.11n Radio Capability message element may be included in the
CAPWAP Configration Status Request/Response messages.
1. SupChanl width: The supported bandwith mode. 0x01: 20MHz 4.2. 802.11n Radio Configuration Message Element
bandwidth binding mode. 0x02: 40MHz bandwidth binding mode.
2. Power Save: 0x00: Static power saving mode. 0x01: Dynamic power
saving mode. 0x03: Do not support power saving mode.
3. ShortGi20: Whether support short GI. 0x00: Do not support short
GI. ox01: Support short GI.
4. HtDelyBlkack: Whether block Ack support delay mode. 0x00: Do
not support delay mode. 0x01: Support delay mode.
5. Max Amsdu: The maximal AMSDU length. 0: 3839 bytes. 1: 7935
bytes.
6. Max RxFactor: The maximal receiving AMPDU factor. Default
value: 3.
7. Min StaSpacing: Minimum MPDU Start Spacing.
8. HiSuppDataRate: Maximal transmission speed.
9. AMPDUBufSize: AMPDU buffer size. The 802.11n Radio Configuration Information Element message element
10. HtcSupp: Whether the packet have HT header. is used by the AC to configure a Radio on the WTP, and by the WTP to
11. 20MHZ 11gMCS: 128 bitmap.If support should be all zero, deliver its radio configuration to the AC. The 802.11n Radio
otherwise all one. Configuration Information Element is defined in figure 1. 802.11n
12. 20MHZ 11aMCS: 128 bitmap.If support should be all zero, Radio Configuration message element may be included in the CAPWAP
otherwise all one. Configuration Update Request message.
13. 40MHZ 11gMCS: 128 bitmap.If support should be all zero,
otherwise all one.
14. 40MHZ 11aMCS: 128 bitmap.If support should be all zero,
otherwise all one.
15. 2. 802.11n Raido Configuration TLV. Following figure is an
example of 802.11n radio configuration TLV.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Element ID | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Amsdu Cfg | Ampdu Cfg | 11nOnly Cfg | | Radio ID |S|P|N|G|B| | MaxSup MCS | Max MandMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ShortGi Cfg | BandWidth Cfg | MaxSupp MCS | Max MandMCS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TxAntenna | RxAntenna | Reserved | | TxAntenna | RxAntenna | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: 802.11n radio configuration Figure 1: 802.11n Radio Configuration Message Element
1. A-MSDU CFG: 0x00: Disable 0x01: Enalbe Type: TBD for 802.11n Radio Configuration Message Element.
2. A-MPDU CFG: 0x00: Disable 0x01: Enalbe
3. 11N Only CFG: Whether allow only 11n user access. 0x00: Allow
non-802.11n user access. 0x01: Do not allow non-802.11n user
access.
4. Short GI CFG: 0x00: Disable 0x01: Enable
5. Bandwidth CFG: Bandwidth binding mode. 0x00: 40MHz 0x01: 20MHz
6. Max Support MCS: Maximal MCS.
7. Max Mandantory MCS: Maximal mandantory MCS.
8. TxAntenna: Transmitting antenna configuration.
9. RxAntenna: Receiving antenna configuration.
10. Each TxAntenna and RxAntenna bit represent one antenna, 1 means
enable, 0 means disable.
3. 802.11n Station Information. Following figure is an example of Length: 16.
802.11n station information information element.
0 1 2 3 S bit: A-MSDU Cfg: Set to 0 if disabled. Set to 1 if enabled.
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ P bit: A-MPDU Cfg: Set to 0 if disabled. Set to 1 if enabled.
| Element ID | Length |
N bit: 11N Only Cfg: Whether allow only 11n user access. Set to 0 if
allow non-802.11n user access. Set to 1 if do not allow non-802.11n
user access.
G bit: Short GI Cfg: Set to 0 if disabled. Set to 1 if enabled.
B bit: Bandwidth Cfg: Bandwidth binding mode. Set to 0 if 40MHz
binding mode. Set to 1 if 20MHz binding mode.
Max Support MCS: Maximal MCS.
Max Mandatory MCS: Maximal mandatory MCS.
TxAntenna: Transmitting antenna configuration. Each TxAntenna bit
represent one antenna, set to 1 if enabled, set to 0 if disabled.
RxAntenna: Receiving antenna configuration. Each RxAntenna bit
represent one antenna, set to 1 if enabled, set to 0 if disabled.
4.3. 802.11n Station Information
The 802.11n Station Information message element is used to deliver
IEEE 802.11n station policy from the AC to the WTP. The definition
of the 802.11n Station Information message element is in figure 2.
802.11n Station Information may be included in the CAPWAP Station
Configuration Request message.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address | | MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|SupChanl width | Power Save | | | MAC Address |S| P |T|F|H|M| | Max RxFactor |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ShortGi20 | ShortGi40 | HtDelyBlkack | Max Amsdu |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max RxFactor | Min StaSpacing| HiSuppDataRate | | Min StaSpacing| HiSuppDataRate | AMPDUBufSize |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AMPDUBufSize | HtcSupp | MCS Set | | AMPDUBufSize | HtcSupp | MCS Set |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MCS Set | | MCS Set |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MCS Set | | MCS Set |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MCS Set |
+-+-+-+-+-+-+-+-+-
Figure 3: 802.11n Station Information Figure 2: 802.11n Station Information
1. SupChanl width: Supporting bandwidth mode. 0x01: 20MHz Type: TBD for 802.11 Station Information.
bandwidth mode. 0x02: 40MHz bandwidth binding mode.
2. Power Save: 0x00: Static power saving mode. 0x01: Dynamic power Length: 29.
saving mode. 0x03: Do not support power saving mode.
3. ShortGi20: Whether support short GI in 20MHz bandwidth mode. S bit: SupChanl width: Supporting bandwidth mode. 0x00: 20MHz
0x00: Do not support short GI. ox01: Support short GI. bandwidth mode. 0x01: 40MHz bandwidth binding mode.
4. ShortGi40: Whether support short GI in 40MHz bandwidth mode.
0x00: Do not support short GI. ox01: Support short GI. P flag: Power Save: 0x00: Static power saving mode. 0x01: Dynamic
5. HtDelyBlkack: Whether block Ack support delay mode. 0x00: Do power saving mode. 0x03: Do not support power saving mode.
not support delay mode. 0x01: Support delay mode.
6. Max Amsdu: The maximal AMSDU length. 0x00: 3839 bytes. 0x01: T bit: ShortGi20: Whether support short GI in 20MHz bandwidth mode.
7935 bytes. 0x00: Do not support short GI. ox01: Support short GI.
7. Max RxFactor: The maximal receiving AMPDU factor.
8. Min StaSpacing: Minimum MPDU Start Spacing. F bit: ShortGi40: Whether support short GI in 40MHz bandwidth mode.
9. HiSuppDataRate: Maximal transmission speed. 0x00: Do not support short GI. ox01: Support short GI.
10. AMPDUBufSize: AMPDU buffer size.
11. HtcSupp: Whether the packet have HT header. H bit: HtDelyBlkack: Whether block Ack support delay mode. 0x00: Do
12. MCS Set: The MCS bitmap that the station supports. not support delay mode. 0x01: Support delay mode.
M bit: Max Amsdu: The maximal AMSDU length. 0x00: 3839 bytes. 0x01:
7935 bytes.
Max RxFactor: The maximal receiving AMPDU factor.
Min StaSpacing: Minimum MPDU Start Spacing.
HiSuppDataRate: Maximal transmission speed.
AMPDUBufSize: AMPDU buffer size.
HtcSupp: Whether the packet have HT header.
MCS Set: The MCS bitmap that the station supports.
5. Power and Channel auto reconfiguration 5. Power and Channel auto reconfiguration
Power and channel auto reconfiguration could avoid potential radio Power and channel auto reconfiguration could avoid potential radio
interference and improve the Wi-Fi performance. In general, the interference and improve the WLAN performance. In general, the auto-
auto-configuration of radio power and channel could occurre at two configuration of radio power and channel could occur at two stages:
stages: when the WTP power on or during the WTP running time. when the WTP power on or during the WTP running time.
When the WTP is power-on, it is of necessity to configure a proper When the WTP is power-on, it is of necessity to configure a proper
channel to the WTP in order to achieve best status of radio links. channel to the WTP in order to achieve best status of radio links.
IEEE 802.11 Direct Sequence Control elements or IEEE 802.11 OFDM IEEE 802.11 Direct Sequence Control elements or IEEE 802.11 OFDM
Control element defined in RFC5416 should be carried to offer WTP a Control element defined in RFC5416 should be carried to offer WTP a
channel at this stage. Those element should be carried in the channel at this stage. Those element should be carried in the
Configure Status Response message. If those information element is Configure Status Response message. If those information element is
zero, the WTP will determine its channel by itself, otherwise the WTP zero, the WTP will determine its channel by itself, otherwise the WTP
should be configured according to the provided information element. should be configured according to the provided information element.
skipping to change at page 7, line 32 skipping to change at page 7, line 7
Update Request message to configure a new channel for the WTP. Update Request message to configure a new channel for the WTP.
IEEE 802.11 Tx Power information element is used by the AC to control IEEE 802.11 Tx Power information element is used by the AC to control
the transmission power of the WTP. The 802.11 Tx Power information the transmission power of the WTP. The 802.11 Tx Power information
element is carried in the Configure Status Response message during element is carried in the Configure Status Response message during
the power on phase or in the Configure Update Request message during the power on phase or in the Configure Update Request message during
the running phase. the running phase.
Channel Scan Procedure. Channel Scan Procedure.
The Channel Scan Procedure is illustrated by the following figure. The Channel Scan Procedure is illustrated by the figure 3.
WTP Configure Status Req AC WTP Configure Status Req AC
-------------------------------------------------------> ------------------------------------------------------->
Configure Status Res(Scan Para TLV, Chl Bind TLV) Configure Status Res(Scan Para, Chl Bind)
<------------------------------------------------------ <------------------------------------------------------
or or
WTP Configure Update Req(Scan Para, Bind TLV) AC WTP Configure Update Req(Scan Para, Chl Bind ) AC
<----------------------------------------------------- <-----------------------------------------------------
Configure Update Res Configure Update Res
-----------------------------------------------------> ----------------------------------------------------->
Figure 4: Channel Scan Procedure Figure 3: Channel Scan Procedure
The definition of the Scan Para TLV is as follows: 5.1. Scan Parameter Message Element
0 1 2 3 The definition of the Scan Para Message Element is as follows:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 0 1 2 3
| Element ID | Length | 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Radio ID | AP oper mode | Scan Type | | Radio ID |M|S|L|D| | Report Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | | PrimeChlSrvTime | On Channel ScanTime |
+---------------------------------------------------------------+ +-------------------------------+-------------------------------+
| Report Time | PrimeChlSrvTime | | Off Channel ScanTime |
+---------------------------------------------------------------+ +-------------------------------+
| On Channel ScanTIme | Off Channel ScanTime |
+---------------------------------------------------------------+
|L|D| Flag | |
+---------------------------------------------------------------+
Figure 5: Scan Para TLV Figure 4: Scan Parameter Message Element
Element ID: TBD; Length:18 Type: TBD for Scan Parameter Message Element.
AP oper mode: the work mode of the WTP. 0x01:normal mode. 0x02: Length: 18.
monitor only mode.
Scan Type: 0x01: active scan; 0x02: passive scan. Radio ID: An 8-bit value representing the radio, whose value is
between one (1) and 31.
M bit: AP oper mode: the work mode of the WTP. 0x01:normal mode.
0x02: monitor only mode.
S bit: Scan Type: 0x01: active scan; 0x02: passive scan.
L bit: L=1: Open Load Balance Scan. D bit: D=1: Open Rogue WTP
detection scan.
Report Time: Channel quality report time. Report Time: Channel quality report time.
PrimeChlSrvTime: Service time on the working scan channel. This PrimeChlSrvTime: Service time on the working scan channel. This
segment is invalid(set to 0) when WTP oper mode is set to 2. The segment is invalid(set to 0) when WTP oper mode is set to 2. The
maximum value of this segment is 10000, the minimum value of this maximum value of this segment is 10000, the minimum value of this
segment is 5000, the default value is 5000. segment is 5000, the default value is 5000.
On Channle ScanTime: The scan time of the working channel. When the On Channel ScanTime: The scan time of the working channel. When the
WTP oper mode is set to 2, this segment is invalid(set to 0). The WTP oper mode is set to 2, this segment is invalid(set to 0). The
maximum value of thi segment is 120, the minimum value of this maximum value of this segment is 120, the minimum value of this
segment is 60, the default value is 60. segment is 60, the default value is 60.
L=1: Open Load Balance Scan. D=1: Open Rogue WTP detection scan. 5.2. Channel Bind Message Element
Flag: Bitmap, resered for furture use.
The definition of the Channel Bind TLV is as follows: The definition of the Channel Bind Message ELement is as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Element ID | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Radio ID | Flag | | Radio ID | Max Cycles |Channel Count |ScanChannelSet.|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max Cycles | Reserved | Channel Count |
+---------------------------------------------------------------+
| Scan Channel Set... |
+---------------------------------------------------------------+
Figure 6: Channel Bind TLV Figure 5: Channel Bind Message Element
Element ID: TBD. Length>=12 Type: TBD for Channel Bind Message Element.
Length >= 12.
Flag: bitmap, reserved. Flag: bitmap, reserved.
Max Cycles: Scan repeat times. 255 means continuous scan. Max Cycles: Scan repeat times. 255 means continuous scan.
Channel Count: The number of channel will be scanned. Channel Count: The number of channel will be scanned.
Scan Channel Set: The channle information. the format is as follows: Scan Channel Set: The channel information. The format is as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Channel ID | Flag | | Channel ID | Flag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Channle Information Format Figure 6: Channel Information Format
Channel ID: the channel ID of the channel which will be scanned. Channel ID: the channel ID of the channel which will be scanned.
Flag: bitmap, reserved for future use. Flag: Bitmap, reserved for future use.
The channle scan procedure: The channel scan procedure:
The WTP has two work mode: the first one is normal mode. In this The WTP has two work mode: the first one is normal mode. In this
mode, the WTP can provide service for the STA access and scan the mode, the WTP can provide service for the STA access and scan the
channel at the same time. Whether the WTP will scan the channel is channel at the same time. Whether the WTP will scan the channel is
determined by the Max Cycles segment in the Channle Bind TLV. When determined by the Max Cycles segment in the Channel Bind TLV. When
this segment is set to 0, the WTP will not scan the channle. If this this segment is set to 0, the WTP will not scan the channle. If this
segment is set to 255, the WTP will continuous scan the channel. The segment is set to 255, the WTP will continuous scan the channel. The
type of the scan is determined by the Sacn Type segment. In the type of the scan is determined by the Scan Type segment. In the
passive scan type, the WTP monitor the airinterface, based on the passive scan type, the WTP monitor the air interface, based on the
received beacon frame to determine the nearby WTPs. In the active received beacon frame to determine the nearby WTPs. In the active
scan type, the WTP will send probe message and receive the probe scan type, the WTP will send probe message and receive the probe
response message. In the normal scan mode, the WTP will use 3 response message. In the normal scan mode, the WTP will use 3
parameters: PrimeChlSrvTime, OnChannelScanTIme, OffChannelScnTIme. parameters: PrimeChlSrvTime, OnChannelScanTIme, OffChannelScnTIme.
The WTP will provide access service for the STAs for PrimeChlSrvTime The WTP will provide access service for the STAs for PrimeChlSrvTime
duration and then start to scan the channel for On Channel ScnTime duration and then start to scan the channel for On Channel ScnTime
duration. Back to the working channel, provide STA access service duration. Back to the working channel, provide STA access service
for PrimeChlSrvTime, then leave the working channel, start to scan for PrimeChlSrvTime, then leave the working channel, start to scan
the next channel for Off Channel ScanTime duration. This process the next channel for Off Channel ScanTime duration. This process
will be repeated until all the channel is scanned. will be repeated until all the channel is scanned.
When the WTP work in the scan only mode, there is no difference When the WTP work in the scan only mode, there is no difference
between the working channel and scan channel. Every channel's scan between the working channel and scan channel. Every channel's scan
duration will be OffChannelScnTime and the PrimeChlSrvTime and duration will be OffChannelScnTime and the PrimeChlSrvTime and
OnChannelScanTime is set to 0. OnChannelScanTime is set to 0.
Scan Report. THe WTP send the scan report to the AC through WTP Scan Report. The WTP send the scan report to the AC through WTP
Event Request message. The information element that used to carry Event Request message. The information element that used to carry
the scan report is Channel Scan Report TLV and Neighbor WTP Report the scan report is Channel Scan Report Message Element and Neighbor
TLV. The example definition of the Channel Scan Report TLV is as WTP Report Message Element.
following figure. The channel scan report may also be conveyed by
IEEE 802.11 information element by carrying the IEEE 802.11 beacon
report message element.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Element ID | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Report Count | Channel Scan Report |
+---------------------------------------------------------------+
Figure 8: Channel Scan Report TLV
Element ID: 133; Length: >= 20.
Report Count: the channle number will be reported. The definition of 5.3. Channel Scan Report
the channel scan report is as follows: The definition of the Channel Scan Report Message Element is in
figure 7.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Channel Number | Radar Statistics | Mean |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time | Mean RSSI | Screen Packet Count | | Radio ID | Report Count | Channel Scan Report |
+---------------------------------------------------------------+
| NeighborCount| Mean Noise | Interference | Self Tx Occp |
+---------------------------------------------------------------+
| SelfStaOccp | Unknown Occp | CRC Err Cnt | Decrypt Err Cnt |
+---------------------------------------------------------------+ +---------------------------------------------------------------+
|Phy Err Cnt | Retrans Cnt |
+-----------------------------+
Figure 9: Channel Scan Report
Channel Number: The channel number.
Radar Statistics: Whether detect radar signal in this channel. 0x00:
detect radar signal. 0x01: no radar signal is detected.
Mean Time: Channel measurement duration. Figure 7: Channel Scan Report Message Element
Mean RSSI: The signal strength of the scanned channel.
Screen Packet Count: Received packet number.
Neighbor Count: The neighbor number of this channel.
Mean Noise: the average noise on this channel.
Interference: The interference of the channel.
Self Tx Occp: The time duration for transmission.
Unknown Occp: TBD.
CRC Err Cnt: CRC err packet number.
Decrypt Err Cnt: Decryption err packet number.
Phy Err Cnt: Physical err packet number. Type: TBD for Channel Scan Report Message Element.
Retrans Cnt: Retransmission packet number. Length: >=29.
The example definition of neighbor WTP report TLV is as follows: Report Count: The channel number will be reported.
The neigbor WTP report message element may also be conveyed using Channel Scan Report: The definition of the Channel Scan Report is in
IEEE 802.11 information element by carrying 802.11 neighbor report figure 8. It complies with the IEEE 802.11 Beacon report that
information element. defined in section 8.4.2.24.7 of [IEEE-802.11.2012].
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Element ID | Length | |Operating Class|Channel Number |Actual Measurement Start Time..|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved | Number of Neighbor Report | | ...Actual Measurement Start Time |
+---------------------------------------------------------------+ |-------------------------------+-------------------------------+
| Neighbor Infor... | |..Actual Measurement Start Time| Measurement Duration |
+---------------------------------------------------------------+ +---------------+---------------+-------------------------------+
|Reported Frame | RCPI | BSSID... |
+---------------+---------------+-------------------------------+
| ...BSSID |
+---------------+-----------------------------------------------+
| Antena ID | Parent TSF... |
+---------------+-----------------------------------------------+
|...Parent TSF | Optional Subelements(variable) |
+---------------+-----------------------------------------------+
Figure 8: Channel Scan Report
Figure 10: Neighbor WTP Report TLV Operating Class: Indicates the channel set for which the measurement
request applies. Country. The definition of this field complies
with the definition in section 8.4.2.24.7 of [IEEE-802.11.2012].
Element ID: 134; Length:>=16 Channel Number: Indicates the channel number for which the
measurement report applies. The definition of this field complies
with the definition in section 8.4.2.24.7 of [IEEE-802.11.2012].
The definition of Neighbor info is as follows: Actual Measurement Start Time: Is set to the value of the measuring
STA's TSF timer at the time the measurement started.
0 1 2 3 Measurement Duration: Is set to the duration over which the Beacon
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Report was measured. The definition of this field complies with the
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ definition in section 8.4.2.24.7 of [IEEE-802.11.2012].
| BSSID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BSSID | Channel Number |
+---------------------------------------------------------------+
| 2rd Offset | Mean RSSI | Sta Intf | AP Intf |
+---------------------------------------------------------------+
Figure 11: Neighbor info Reported Frame Information: This field contains two subfields as
defined in [IEEE-802.11.2012].
BSSID: The BSSID of this neighbor channel. RCPI: Indicates the received channel power of the Beacon, Measurement
Pilot, or Probe Response frame.
Channel Number: The channel number of this neighbor channel. RSNI:Indicates the received signal to noise indication for the
Beacon, Measurement Pilot, or Probe Response frame.
2rd channel offset: TBD. BSSID: This field contains the BSSID from the Beacon,Measurement
Pilot, or Probe Response frame being reported.
Mean RSSI: The average signal strength of the channel. Antenna ID: This field contains the identifying number for the
antennas used for this measurement.
Sta Intf: TBD. Parent TSF: This field contains the lower 4 octets of the measuring
STA's TSF timer value at the start of reception of the first octet of
the timestamp field of the reported Beacon, Measurement Pilot, or
Probe Response frame at the time the Beacon frame being reported was
received.
AP Intf: TBD. Optional Subelements: This field contains zero or more subelements.
5.4. Neighbor WTP Report
The neighbor WTP report message element is composed of the IEEE
802.11 Information Element that defined in section 6.6 of [RFC5416]
and IEEE 802.11 Neighbor Report Element that defined in section
8.4.2.39 of [IEEE-802.11.2012]. The Neighbor Report Element is
carried by the IEEE 802.11 Information Element to form the neighbor
WTP report message element.
6. Security Considerations 6. Security Considerations
This document is based on RFC5415/RFC5416 and it doesn't increase any This document is based on RFC5415/RFC5416 and it doesn't increase any
security risk. The security considerations of this document aligns security risk. The security considerations of this document aligns
with RFC5415/5416. with RFC5415/5416.
7. IANA Considerations 7. IANA Considerations
The extension defined in this document need to extend IEEE 802.11 The extension defined in this document need to extend CAPWAP IEEE
binding message element which is defined in RFC 5416. the 802.11 binding message element which is defined in section 6 of
corresponding type values need to be defined by IANA. [RFC5416]. The following IEEE 802.11 specific message element type
need to be defined by IANA.
802.11n Radio Configuration Message Element type value described in
section 4.2.
802.11n Station Message Element type value described in section 4.3.
Scan Parameter Message Element type value described in section 5.1.
Channel Bind Message Element type value described in section 5.2.
Channel Scan Report Message Element type value described in section
5.3.
8. Contributors 8. Contributors
This draft is a joint effort from the following contributors: This draft is a joint effort from the following contributors:
Gang Chen: China Mobile chengang@chinamobile.com Gang Chen: China Mobile chengang@chinamobile.com
Naibao Zhou: China Mobile zhounaibao@chinamobile.com Naibao Zhou: China Mobile zhounaibao@chinamobile.com
Chunju Shao: China Mobile shaochunju@chinamobile.com Chunju Shao: China Mobile shaochunju@chinamobile.com
skipping to change at page 13, line 44 skipping to change at page 13, line 8
Xiaolong Yu: Ruijie Networks Xiaolong Yu: Ruijie Networks
Song zhao: ZhiDaKang Communications Song zhao: ZhiDaKang Communications
Yiwen Mo: ZhongTai Networks Yiwen Mo: ZhongTai Networks
9. Acknowledgements 9. Acknowledgements
The authors would like to thanks Ronald Bonica,Romascanu Dan, Benoit The authors would like to thanks Ronald Bonica,Romascanu Dan, Benoit
Claise and Margaret Wasserman for their usefull suggestions. The Claise, Melinda Shore and Margaret Wasserman for their useful
authors also thanks Dorothy Stanley's review and useful comments. suggestions. The authors also thanks Dorothy Stanley's review and
useful comments.
10. Normative References 10. Normative References
[IEEE-802.11.2009]
, "IEEE Standard for Information technology -
Telecommunications and information exchange between
systems Local and metropolitan area networks - Specific
requirements Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications ", 2009.
[IEEE-802.11.2012]
, "IEEE Standard for Information technology -
Telecommunications and information exchange between
systems Local and metropolitan area networks - Specific
requirements Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications ", March
2012.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997. Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4564] Govindan, S., Cheng, H., Yao, ZH., Zhou, WH., and L. Yang, [RFC4564] Govindan, S., Cheng, H., Yao, ZH., Zhou, WH., and L. Yang,
"Objectives for Control and Provisioning of Wireless "Objectives for Control and Provisioning of Wireless
Access Points (CAPWAP)", RFC 4564, July 2006. Access Points (CAPWAP)", RFC 4564, July 2006.
[RFC5415] Calhoun, P., Montemurro, M., and D. Stanley, "Control And [RFC5415] Calhoun, P., Montemurro, M., and D. Stanley, "Control And
Provisioning of Wireless Access Points (CAPWAP) Protocol Provisioning of Wireless Access Points (CAPWAP) Protocol
Specification", RFC 5415, March 2009. Specification", RFC 5415, March 2009.
 End of changes. 95 change blocks. 
312 lines changed or deleted 289 lines changed or added

This html diff was produced by rfcdiff 1.41. The latest version is available from http://tools.ietf.org/tools/rfcdiff/