NETCONF Working Group                                          K. Watsen
Internet-Draft                                          Juniper Networks
Intended status: Standards Track                                   G. Wu                          March 13, 2017
Expires: May 4, September 14, 2017                                      Cisco Networks
                                                        October 31, 2016

                             Keystore Model
                     draft-ietf-netconf-keystore-00
                     draft-ietf-netconf-keystore-01

Abstract

   This document defines a YANG data module for a system-level keystore
   mechanism, that might be used to hold onto private keys and
   certificates that are trusted by the system advertising support for
   this module.

Editorial Note (To be removed by RFC Editor)

   This draft contains many placeholder values that need to be replaced
   with finalized values at the time of publication.  This note
   summarizes all of the substitutions that are needed.  No other RFC
   Editor instructions are specified elsewhere in this document.

   This document contains references to other drafts in progress, both
   in the Normative References section, as well as in body text
   throughout.  Please update the following references to reflect their
   final RFC assignments:

   o  draft-ietf-netconf-restconf

   o  draft-ietf-netconf-call-home

   o  draft-ietf-rtgwg-yang-key-chain

   Artwork in this document contains shorthand references to drafts in
   progress.  Please apply the following replacements:

   o  "VVVV" --> the assigned RFC value for this draft

   o  "XXXX" --> the assigned RFC value for draft-ietf-netconf-restconf

   o  "YYYY" --> the assigned RFC value for draft-ietf-netconf-call-home

   Artwork in this document contains placeholder values for ports
   pending IANA assignment from "draft-ietf-netconf-call-home".  Please
   apply the following replacements:

   o  "7777" --> the assigned port value for "netconf-ch-ssh"

   o  "8888" --> the assigned port value for "netconf-ch-tls"

   o  "9999" --> the assigned port value for "restconf-ch-tls"

   Artwork in this document contains placeholder values for the date of
   publication of this draft.  Please apply the following replacement:

   o  "2016-10-31"  "2017-03-13" --> the publication date of this draft

   The following two Appendix sections are to be removed prior to
   publication:

   o  Appendix A.  Change Log

   o  Appendix B.  Open Issues

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 4, September 14, 2017.

Copyright Notice

   Copyright (c) 2016 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   4   3
     1.2.  Tree Diagram Notation . . . . . . . . . . . . . . . . . .   4   3
   2.  The Keystore Model  . . . . . . . . . . . . . . . . . . . . .   4
     2.1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . .   5   4
     2.2.  Example Usage . . . . . . . . . . . . . . . . . . . . . .   6   5
     2.3.  YANG Module . . . . . . . . . . . . . . . . . . . . . . .  17  10
   3.  Design Considerations . . . . . . . . . . . . . . . . . . . .  28  20
   4.  Security Considerations . . . . . . . . . . . . . . . . . . .  29  21
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  30  22
     5.1.  The IETF XML Registry . . . . . . . . . . . . . . . . . .  30  22
     5.2.  The YANG Module Names Registry  . . . . . . . . . . . . .  30  22
   6.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  31  23
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  31  23
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  31  23
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  32  23
   Appendix A.  Change Log . . . . . . . . . . . . . . . . . . . . .  33  25
     A.1.  server-model-09 to 00 . . . . . . . . . . . . . . . . . .  33  25
     A.2.  keychain-00 to keystore-00  . . . . . . . . . . . . . . .  25
     A.3.  00 to 01  . . . . . . . . . . . . . . . . . . . . . . . .  25
   Appendix B.  Open Issues  . . . . . . . . . . . . . . . . . . . .  33
   Authors' Addresses  25
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . .  33 .  25

1.  Introduction

   This document defines a YANG [RFC6020] data module for a system-level
   keystore mechanism, which can be used to hold onto private keys and
   certificates that are trusted by the system advertising support for
   this module.

   This module provides a centralized location for security sensitive
   data, so that the data can be then referenced by other modules.
   There are two types of data that are maintained by this module:

   o  Private keys, and any associated public certificates.

   o  Sets of trusted certificates.

   This document extends special consideration for systems that have
   Trusted Protection Modules (TPMs).  These systems are unique in that
   the TPM must be directed to generate new private keys (it is not
   possible to load a private key into a TPM) and it is not possible to
   backup/restore the TPM's private keys as configuration.

   It is not required that a system has an operating system level
   keystore utility to implement this module.

1.1.  Requirements Language

   The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

1.2.  Tree Diagram Notation

   A simplified graphical representation of the data models is used in
   this document.  The meaning of the symbols in these diagrams is as
   follows:

   o  Brackets "[" and "]" enclose list keys.

   o  Braces "{" and "}" enclose feature names, and indicate that the
      named feature must be present for the subtree to be present.

   o  Abbreviations before data node names: "rw" means configuration
      (read-write) and "ro" state data (read-only).

   o  Symbols after data node names: "?" means an optional node, "!"
      means a presence container, and "*" denotes a list and leaf-list.

   o  Parentheses enclose choice and case nodes, and case nodes are also
      marked with a colon (":").

   o  Ellipsis ("...") stands for contents of subtrees that are not
      shown.

2.  The Keystore Model

   The keystore module defined in this section provides a configurable
   object having the following characteristics:

   o  A semi-configurable list of private keys, each with one or more
      associated certificates.  Private keys MUST be either preinstalled
      (e.g., a key associated to an IDevID [Std-802.1AR-2009]
      certificate), be generated by request, or be loaded by request.
      Each private key is MAY have associated certificates, either
      preinstalled or configured after creation.

   o  A configurable list of lists of trust anchor certificates.  This
      enables the server to have use-case specific trust anchors.  For
      instance, one list of trust anchors might be used to authenticate
      management connections (e.g., client certificate-based
      authentication for NETCONF or RESTCONF connections), and a
      different list of trust anchors might be used for when connecting
      to a specific Internet-based service (e.g., a zero touch bootstrap
      server).

   o  An RPC to generate a certificate signing request for an existing
      private key, a passed subject, and an optional attributes.  The
      signed certificate returned from an external certificate authority
      (CA) can be later set using a standard configuration change
      request (e.g., <edit-config>).

   o  An RPC to request the server to generate a new private key using
      the specified algorithm and key length.

   o  An RPC to request the server to load a new private key.

2.1.  Overview

   The keystore module has the following tree diagram.  Please see
   Section 1.2 for information on how to interpret this diagram.

  module: ietf-keystore
      +--rw keystore
         +--rw private-keys keys
         |  +--rw private-key* key* [name]
         |  |     +--rw name                                    string
         |  |  +--ro algorithm?     +--rw algorithm-identifier                    identityref
         |  |  +--ro key-length?                             uint32
        |     +--rw private-key                             union
         |     +--ro public-key                              binary
         |  |     +--rw certificate-chains
        | certificates
         |     |  +--rw certificate-chain* certificate* [name]
         |     |  |     +--rw name     string
         |     |  |     +--rw certificate* value?   binary
         |  |     +---x generate-certificate-signing-request
         |  |        +---w input
         |        |     |  +---w subject       binary
         |        |     |  +---w attributes?   binary
         |  |        +--ro output
         |  |           +--ro certificate-signing-request    binary
        |  +---x generate-private-key
        |  |  +---w input
        |  |     +---w name          string
        |  |     +---w algorithm     identityref
        |  |     +---w key-length?   uint32
        |  +---x load-private-key
        |     +---w input
        |        +---w name           string
        |        +---w private-key    binary
         +--rw trusted-certificates* [name]
         |  +--rw name                   string
         |  +--rw description?           string
         |  +--rw trusted-certificate* [name]
         |     +--rw name           string
         |     +--rw certificate?   binary
         +--rw trusted-ssh-host-keys* trusted-host-keys* [name]
        |
            +--rw name                string
        |
            +--rw description?        string
        |
            +--rw trusted-host-key* [name]
        |
               +--rw name        string
        |
               +--rw host-key    binary
        +--rw user-auth-credentials
           +--rw user-auth-credential* [username]
              +--rw username       string
              +--rw auth-method* [priority]
                 +--rw priority               uint8
                 +--rw (auth-type)?
                    +--:(certificate)
                    |  +--rw certificate*           -> /keystore/private
 -keys/private-key/certificate-chains/certificate-chain/name
                    +--:(public-key)
                    |  +--rw public-key*            -> /keystore/private
 -keys/private-key/name
                    +--:(ciphertext-password)
                    |  +--rw ciphertext-password?   string
                    +--:(cleartext-password)
                       +--rw cleartext-password?    string

    notifications:
      +---n certificate-expiration
         +--ro certificate        instance-identifier
         +--ro expiration-date    yang:date-and-time

2.2.  Example Usage

   The following example illustrates the "generate-private-key" action
   in use what a fully configured keystore
   object might look like.  The private-key shown below is consistent
   with the RESTCONF protocol generate-private-key and JSON encoding.

   REQUEST
   -------

     ['\' line wrapping added for formatting only]

     POST https://example.com/restconf/data/ietf-keystore:keystore/\
     private-keys/generate-private-key HTTP/1.1
     HOST: example.com
     Content-Type: application/yang.operation+json

     {
       "ietf-keystore:input" : {
         "name" : "ex-key-sect571r1",
         "algorithm" : "sect571r1"
       }
     }

   RESPONSE
   --------

     HTTP/1.1 204 No Content
     Date: Mon, 31 Oct 2015 11:01:00 GMT
     Server: example-server

   The following example illustrates the "load-private-key" action in
   use with the RESTCONF protocol and JSON encoding.

   REQUEST
   -------

     ['\' line wrapping added for formatting only]

     POST https://example.com/restconf/data/ietf-keystore:keystore/\
     private-keys/load-private-key HTTP/1.1
     HOST: example.com
     Content-Type: application/yang.operation+xml

     <input xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
       <name>ex-key-sect571r1</name>
       <private-key>
         NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd\
         VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER\
         V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF\
         Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN\
         QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ\
         MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ\
         NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC\
         WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM\
         lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk\
         zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot\
         25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2\
         WpiMjB2WlhoaGJYQnNaUzVqY215aU9L=
       </private-key>
     </input>

   RESPONSE
   --------

     HTTP/1.1 204 No Content
     Date: Mon, 31 Oct 2015 11:01:00 GMT
     Server: example-server

   The following example illustrates the "generate-certificate-signing-
   request" action in use with the NETCONF protocol.

   REQUEST
   -------

     <rpc message-id="101"
       xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
       <action xmlns="urn:ietf:params:xml:ns:yang:1">
         <keystore
           xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
           <private-keys>
             <private-key>
               <name>ex-key-sect571r1</name>
               <generate-certificate-signing-request>
                 <subject>
                  cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2R
                  manZvO3NkZmJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNlmO
                  Z2aXNiZGZpYmhzZG87ZmJvO3NkZ25iO29pLmR6Zgo=
                 </subject>
                 <attributes>
                  bwtakWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvut4
                  arnZvO3NkZmJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYm
                  Z2aXNiZGZpYmhzZG87ZmJvO3NkZ25iO29pLmC6Rhp=
                 </attributes>
               </generate-certificate-signing-request>
             </private-key>
           </private-keys>
         </keystore>
       </action>
     </rpc>

   RESPONSE
   --------

     <rpc-reply message-id="101"
        xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
        <certificate-signing-request
          xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
          LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
          0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
          FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
          GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
          diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
          KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
          El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1
          FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV
          bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W
          URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU
          ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
          mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
          RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
          rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
          TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
          c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
          SWHgzZjdVM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
        </certificate-signing-request>
     </rpc-reply>

   The following example illustrates what a fully configured keystore
   object might look like.  The private-key shown below is consistent
   with the generate-private-key and generate-certificate-signing-
   request examples above.  This generate-certificate-signing-
   request examples above.  This example also assumes that the resulting
   CA-signed certificate has been configured back onto the server.
   Lastly, this example shows that three lists of trusted certificates
   having been configured.

   <keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
     <!-- private keys and associated certificates -->
     <private-keys>
       <private-key>
         <name>my-rsa-user-key</name>
         <algorithm>rsa</algorithm>
         <public-key>
           cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2RmanZvO3NkZ
           mJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYmZ2aXNiZGZpYmhzZG87Zm
           JvO3NkZ25iO29pLmR6Zgo=
         </public-key>
         <certificate-chains>
           <certificate-chain>
             <name>my-rsa-chain</name>
     <keys>
       <key>
         <name>ex-rsa-key</name>
         <algorithm-identifier>rsa1024</algorithm-identifier>
         <private-key>Base64-encoded RSA Private Key</private-key>
         <public-key>Base64-encoded RSA Public Key</public-key>
         <certificates>
           <certificate>
               ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
               diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
               LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
               KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
               0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
               FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
               GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
               mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
               RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
               rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
               TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
               c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
               SWM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
             <name>ex-rsa-cert</name>
             <value>Base64-encoded PKCS#7</value>
           </certificate>
           </certificate-chain>
         </certificate-chains>
       </private-key>

       <private-key>
         <name>my-ec-user-key</name>
         <algorithm>secp256r1</algorithm>
         <public-key>
           mJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYmZ2aXNiZGZpYmhzZG87Zm
           cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2RmanZvO3NkZ
           JvO3NkZ25iO29pLmR6Zgo=
         </public-key>
         <certificate-chains>
           <certificate-chain>
             <name>my-ec-chain</name>
         </certificates>
       </key>

       <key>
         <name>tls-ec-key</name>
         <algorithm-identifier>secp256r1</algorithm-identifier>
         <private-key>Base64-encoded EC Private Key</private-key>
         <public-key>Base64-encoded EC Public Key</public-key>
         <certificates>
           <certificate>
               0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
               ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
               diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
               LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
               KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
               FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
               GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
               mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
               RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
               rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
               TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
               c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
               SWM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
             <name>tls-ec-cert</name>
             <value>Base64-encoded PKCS#7</value>
           </certificate>
           </certificate-chain>
         </certificate-chains>
       </private-key>

       <private-key>
         </certificates>
       </key>

       <key>
         <name>tpm-protected-key</name>
         <algorithm>sect571r1</algorithm>
         <public-key>
           cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2RmanZvO3NkZ
           mJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYmZ2aXNiZGZpYmhzZG87Zm
           JvO3NkZ25iO29pLmR6Zgo=
         </public-key>
         <certificate-chains>
           <certificate-chain>
             <name>default-idevid-chain</name>
             <certificate>
               diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
               LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
               KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
               0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
               FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
               GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
               ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
               mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
               RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
               rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
               TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
               c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
               SWM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
             </certificate>
             <certificate>
               KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
               El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1
               FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV
               bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W
               LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
               0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
               FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
               GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
               diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
               URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU
               RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
               rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
               c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
               SSUZJQ0FURS0tLS0tCg==
             </certificate>
           </certificate-chain>
           <certificate-chain>
             <name>my-ldevid-chain</name>
         <algorithm-identifier>rsa2048</algorithm-identifier>
         <private-key>Base64-encoded RSA Private Key</private-key>
         <public-key>Base64-encoded RSA Public Key</public-key>
         <certificates>
           <certificate>
               0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
               FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
               GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
               diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
               LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
               KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
               El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1
               FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV
               ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
               mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
               RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
               rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
               TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
               c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
               SWM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
             <name>builtin-idevid-cert</name>
             <value>Base64-encoded PKCS#7</value>
           </certificate>
           <certificate>
               LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
               0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
               FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
               GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
               diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
               KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
               El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1
               FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV
               bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W
               URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU
               ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
               mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
               RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
               rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
               TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
               c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
               SWHgzZjdVM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
             <name>my-ldevid-cert</name>
             <value>Base64-encoded PKCS#7</value>
           </certificate>
           </certificate-chain>
         </certificate-chains>
       </private-key>
     </private-keys>
         </certificates>
       </key>
     </keys>

     <!-- trusted netconf/restconf client certificates -->
     <trusted-certificates>
       <name>explicitly-trusted-client-certs</name>
       <description>
         Specific client authentication certificates that are to be for explicitly
         trusted NETCONF/RESTCONF clients.  These are needed for client certificates
         that are not signed by our a trusted CA.
       </description>
       <trusted-certificate>
         <name>George Jetson</name>
         <certificate>
           QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ
           MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ
           25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2
           RV0JCU2t2MXI2SFNHeUFUVkpwSmYyOWtXbUU0NEo5akJrQmdOVkhTTUVY
           VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
           UxNQWtHQTFVRUJoTUNWVk14RURBT0JnTlZCQW9UQjJWNApZVzF3YkdVeE
           V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
           NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
           Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
           WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW
           xWVE1SQXdEZ1lEVlFRSwpFd2RsZUdGdGNHeGxNUk13RVFZRFZRUURFd3B
           EVWt3Z1NYTnpkV1Z5TUEwR0NTcUdTSWIzRFFFQkJRVUFBNEdCCkFFc3BK
           WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
           TQzcjFZSjk0M1FQLzV5eGUKN2QxMkxCV0dxUjUrbEl5N01YL21ka2M4al
           zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
           LS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
         </certificate>
       </trusted-certificate>
       <trusted-certificate>
         <name>Fred Flintstone</name>
         <certificate>
           VlEVlFRREV3Vm9ZWEJ3ZVRDQm56QU5CZ2txaGtpRzl3MEJBUUVGQUFPQm
           pRQXdnWWtDCmdZRUE1RzRFSWZsS1p2bDlXTW44eUhyM2hObUFRaUhVUzV
           rRUpPQy9hSFA3eGJXQW1ra054ZStUa2hrZnBsL3UKbVhsTjhSZUd1ODhG
           NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd
           VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
           V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
           NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
           Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
           WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW
           xWVE1SQXdEZ1lEVlFRSwpFd2RsZUdGdGNHeGxNUk13RVFZRFZRUURFd3B
           EVWt3Z1NYTnpkV1Z5TUEwR0NTcUdTSWIzRFFFQkJRVUFBNEdCCkFFc3BK
           WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
           lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk
           zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
           QWtUOCBDRVUUZJ0RUF==
         </certificate>
         <certificate>Base64-encoded X.509v3</certificate>
       </trusted-certificate>
     </trusted-certificates>

     <!-- trust anchors (CA certs) for netconf/restconf clients -->

     <trusted-certificates>
       <name>deployment-specific-ca-certs</name>
       <name>explicitly-trusted-server-certs</name>
       <description>
         Trust anchors used only to authenticate NETCONF/RESTCONF
         client connections.  Since our security policy only allows
         Specific server authentication certificates for clients having a certificate explicitly
         trusted servers.  These are needed for server certificates
         that are not signed by
         our CA, we only configure its a trusted CA.
       </description>
       <trusted-certificate>
         <name>Fred Flintstone</name>
         <certificate>Base64-encoded X.509v3</certificate>
       </trusted-certificate>
     </trusted-certificates>

     <!-- trust anchors (CA certs) for authenticating clients -->
     <trusted-certificates>
       <name>deployment-specific-ca-certs</name>
       <description>
         Trust anchors (i.e. CA certs) that are used to authenticate
         client connections.  Clients are authenticated if their
         certificate below. has a chain of trust to one of these configured
         CA certificates.
       </description>
       <trusted-certificate>
         <name>ca.example.com</name>
         <certificate>
           WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
           lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk
           zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
           NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd
           VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
           V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
           NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
           Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
           WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW
           QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ
           MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ
           25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2
           RJSUJQFRStS0Cg==
         </certificate>
         <certificate>Base64-encoded X.509v3</certificate>
       </trusted-certificate>
     </trusted-certificates>

     <!-- trust anchors for random HTTPS servers on Internet -->
     <trusted-certificates>
       <name>common-ca-certs</name>
       <description>
         Trusted certificates to authenticate common HTTPS servers.
         These certificates are similar to those that might be
         shipped with a web browser.
       </description>
       <trusted-certificate>
         <name>ex-certificate-authority</name>
         <certificate>
           NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd
           VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
           V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF
           Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN
           QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ
           MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ
           NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC
           WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM
           lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk
           zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot
           25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2
           WpiMjB2WlhoaGJYQnNaUzVqY215aU9L=
         </certificate>
         <certificate>Base64-encoded X.509v3</certificate>
       </trusted-certificate>
     </trusted-certificates>

     <!-- trusted SSH host keys -->
     <trusted-ssh-host-keys>
     <trusted-host-keys>
       <name>explicitly-trusted-ssh-host-keys</name>
       <description>
         Trusted SSH host keys used to authenticate SSH servers.
         These host keys would be analogous to those stored in
         a known_hosts file in OpenSSH.
       </description>
       <trusted-host-key>
         <name>corp-fw1</name>
         <host-key>
           VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER
           NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd
           WpiMjB2WlhoaGJYQnNaUzVqY215aU9L=
         </host-key>
         <host-key>Base64-encoded OneAsymmetricKey</host-key>
       </trusted-host-key>
     </trusted-ssh-host-keys>

     <!-- user credentials and associated authentication methods -->
     <user-auth-credentials>
       <user-auth-credential>
         <username>admin</username>
         <auth-method>
           <priority>1</priority>
           <certificate-chain>my-ec-chain</certificate-chain>
           <certificate-chain>my-rsa-chain</certificate-chain>
         </auth-method>
         <auth-method>
           <priority>2</priority>
           <public-key>my-rsa-user-key</public-key>
         </auth-method>
       </user-auth-credential>
       <user-auth-credential>
         <username>tester</username>
         <auth-method>
           <priority>1</priority>
           <cleartext-password>testing123</cleartext-password>
         </auth-method>
       </user-auth-credential>
       <user-auth-credential>
         <username>ldevid</username>
         <auth-method>
           <priority>1</priority>
           <certificate-chain>my-ldevid-chain</certificate-chain>
         </auth-method>
       </user-auth-credential>
     </user-auth-credentials>
     </trusted-host-keys>

   </keystore>

   The following example illustrates the "generate-certificate-signing-
   request" action in use with the NETCONF protocol.

   REQUEST
   -------

     <rpc message-id="101"
       xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
       <action xmlns="urn:ietf:params:xml:ns:yang:1">
         <keystore
           xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
           <private-keys>
             <private-key>
               <name>ex-key-sect571r1</name>
               <generate-certificate-signing-request>
                 <subject>
                  cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2R
                  manZvO3NkZmJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNlmO
                  Z2aXNiZGZpYmhzZG87ZmJvO3NkZ25iO29pLmR6Zgo=
                 </subject>
                 <attributes>
                  bwtakWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvut4
                  arnZvO3NkZmJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYm
                  Z2aXNiZGZpYmhzZG87ZmJvO3NkZ25iO29pLmC6Rhp=
                 </attributes>
               </generate-certificate-signing-request>

             </private-key>
           </private-keys>
         </keystore>
       </action>
     </rpc>

   RESPONSE
   --------

     <rpc-reply message-id="101"
        xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
        <certificate-signing-request
          xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
          LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z
          0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU
          FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd
          GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE
          diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl
          KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3
          El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1
          FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV
          bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W
          URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU
          ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d
          mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0
          RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx
          rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx
          TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d
          c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV
          SWHgzZjdVM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
        </certificate-signing-request>
     </rpc-reply>

   The following example illustrates a "certificate-expiration"
   notification in XML.

   ['\' line wrapping added for formatting only]

   <notification
     xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
     <eventTime>2016-07-08T00:01:00Z</eventTime>
     <certificate-expiration
       xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
    <certificate>
      /ks:keystore/ks:private-keys/ks:private-key/ks:certificate-chains\
      /ks:certificate-chain/ks:certificate[3]
       <certificate>/ks:keystore/ks:private-keys/ks:private-key\
       /ks:certificate-chains/ks:certificate-chain/ks:certificate[3]\
       </certificate>
       <expiration-date>2016-08-08T14:18:53-05:00</expiration-date>
     </certificate-expiration>
   </notification>

2.3.  YANG Module

   This YANG module makes extensive use of data types defined in
   [RFC5280] and [RFC5958].

<CODE BEGINS> file "ietf-keystore@2016-10-31.yang" "ietf-keystore@2017-03-13.yang"

module ietf-keystore {
  yang-version 1.1;

  namespace "urn:ietf:params:xml:ns:yang:ietf-keystore";
  prefix "ks";

  import ietf-yang-types {
    prefix yang;
    reference
      "RFC 6991: Common YANG Data Types";
  }

  import ietf-netconf-acm {
    prefix nacm;
    reference
      "RFC 6536: Network Configuration Protocol (NETCONF) Access
       Control Model";
  }

  organization
   "IETF NETCONF (Network Configuration) Working Group";

  contact
   "WG Web:   <http://tools.ietf.org/wg/netconf/>
    WG List:  <mailto:netconf@ietf.org>

    WG Chair: Mehmet Ersue
              <mailto:mehmet.ersue@nsn.com>

    WG Chair: Mahesh Jethanandani
              <mailto:mjethanandani@gmail.com>

    Editor:
    Author:   Kent Watsen
              <mailto:kwatsen@juniper.net>";

  description
   "This module defines a keystore to centralize management
    of security credentials.

    Copyright (c) 2014 IETF Trust and the persons identified
    as authors of the code. All rights reserved.

    Redistribution and use in source and binary forms, with
    or without modification, is permitted pursuant to, and
    subject to the license terms contained in, the Simplified
    BSD License set forth in Section 4.c of the IETF Trust's
    Legal Provisions Relating to IETF Documents
    (http://trustee.ietf.org/license-info).

    This version of this YANG module is part of RFC VVVV; see
    the RFC itself for full legal notices.";

  revision "2016-10-31" "2017-03-13" {
    description
     "Initial version";
    reference
     "RFC VVVV: NETCONF Server and RESTCONF Server Configuration
                Models";
  }

  // Identities

  identity key-algorithm {
    description
      "Base identity from which all key-algorithms are derived.";
  }

  identity rsa rsa1024 {
    base key-algorithm;
    description
      "The RSA algorithm."; algorithm using a 1024-bit key.";
    reference
      "RFC3447: Public-Key Cryptography Standards (PKCS) #1:
                RSA Cryptography Specifications Version 2.1.";
  }

  identity secp192r1 rsa2048 {
    base key-algorithm;
    description
      "The secp192r1 algorithm."; RSA algorithm using a 2048-bit key.";
    reference
      "RFC5480:
         Elliptic Curve
      "RFC3447: Public-Key Cryptography Subject Public Key Information."; Standards (PKCS) #1:
                RSA Cryptography Specifications Version 2.1.";
  }

  identity secp256r1 rsa3072 {
    base key-algorithm;
    description
      "The secp256r1 algorithm."; RSA algorithm using a 3072-bit key.";
    reference
      "RFC5480:
         Elliptic Curve
      "RFC3447: Public-Key Cryptography Subject Public Key Information."; Standards (PKCS) #1:
                RSA Cryptography Specifications Version 2.1.";
  }

  identity secp384r1 rsa4096 {
    base key-algorithm;
    description
      "The secp384r1 algorithm."; RSA algorithm using a 4096-bit key.";
    reference
      "RFC5480:
         Elliptic Curve
      "RFC3447: Public-Key Cryptography Subject Public Key Information."; Standards (PKCS) #1:
                RSA Cryptography Specifications Version 2.1.";
  }

  identity secp521r1 rsa7680 {
    base key-algorithm;
    description
      "The secp521r1 algorithm."; RSA algorithm using a 7680-bit key.";
    reference
      "RFC5480:
         Elliptic
      "RFC3447: Public-Key Cryptography Standards (PKCS) #1:
                RSA Cryptography Specifications Version 2.1.";
  }

  identity rsa15360 {
    base key-algorithm;
    description
      "The RSA algorithm using a 15360-bit key.";
    reference
      "RFC3447: Public-Key Cryptography Standards (PKCS) #1:
                RSA Cryptography Specifications Version 2.1.";
  }

  identity secp192r1 {
    base key-algorithm;
    description
      "The secp192r1 algorithm.";
    reference
      "RFC5480:

         Elliptic Curve Cryptography Subject Public Key Information.";
  }

  identity secp256r1 {
    base key-algorithm;
    description
      "The secp256r1 algorithm.";
    reference
      "RFC5480:
         Elliptic Curve Cryptography Subject Public Key Information.";
  }

  identity secp384r1 {
    base key-algorithm;
    description
      "The secp384r1 algorithm.";
    reference
      "RFC5480:
         Elliptic Curve Cryptography Subject Public Key Information.";
  }

  identity secp521r1 {
    base key-algorithm;
    description
      "The secp521r1 algorithm.";
    reference
      "RFC5480:
         Elliptic Curve Cryptography Subject Public Key Information.";
  }

  // data model

  container keystore {
    nacm:default-deny-write;
    description
      "A list of private-keys
      "The keystore contains both active material (e.g., private keys
       and their associated certificates, as
       well as lists of trusted certificates for client certificate
       authentication.  RPCs are provided passwords) and passive material (e.g., trust anchors).

       The active material can be used to generate support either a new server (e.g.,
       a TLS/SSH server's private) or a client (a private key and used for
       TLS/SSH client-certificate based authentication, or a password
       used for SSH/HTTP-client authentication).

       The passive material can be used to generate support either a certificate signing requests."; server
       (e.g., client certificates to trust) or clients (e.g., server
       certificates to trust).";

    container private-keys keys {
      description
        "A list of private key keys maintained by the keystore.";
      list private-key key {
        key name;
        description
          "A private key."; key maintained by the keystore.";
        leaf name {
          type string;
          description
            "An arbitrary name for the private key.";
        }
        leaf algorithm algorithm-identifier {
          type identityref {
            base "key-algorithm";
          }
          config false;
          mandatory true;
          description
            "The
            "Identifies which algorithm is to be used by with the private key."; key.
             This value determines how the 'private-key' and 'public-
             key' fields are interpreted.";
             // no params, such as in RFC 5912? (no are set for algs
             // we care about, but what about the future?
        }
        leaf key-length private-key {
          nacm:default-deny-all;
          type uint32;
          config false; union {
            type binary;
            type enumeration {
              enum "RESTRICTED" {
                description
                 "The key-length used by the private key."; key is restricted due to access-control.";
              }
        leaf public-key
              enum "INACCESSIBLE" {
          type binary;
          config false;
                description
                 "The private key is inaccessible due to being protected
                  by the cryptographic hardware modules (e.g., a TPM).";
              }
            }
          }
          mandatory true;
          description
            "An OneAsymmetricKey 'publicKey' structure
            "A binary string that contains the value of the private
             key. The interpretation of the content is defined in the
             registration of the key algorithm.  For example, a DSA key
             is an INTEGER, an RSA key is represented as specified
             by RSAPrivateKey
             as defined in [RFC3447], and an Elliptic Curve Cryptography
             (ECC) key is represented as ECPrivateKey as defined in
             [RFC5915]"; // text lifted from RFC5958

        }

        // no key usage (ref: RFC 5958, Section 2 encoded using 5912, pg 101 -- too X.509 specific?)

        leaf public-key {
          type binary;
          config false;
          mandatory true;
          description
            "A binary string that contains the ASN.1
             distinguished encoding rules (DER), as specified value of the public
             key. The interpretation of the content is defined in ITU-T X.690.";
          reference
            "RFC 5958:
                Asymmetric Key Packages
             ITU-T X.690:
                Information technology - ASN.1 encoding rules:
                Specification the
             registration of Basic Encoding Rules (BER),
                Canonical Encoding Rules (CER) the key algorithm.  For example, a DSA key
             is an INTEGER, an RSA key is represented as RSAPublicKey
             as defined in [RFC3447], and Distinguished
                Encoding Rules (DER)."; an Elliptic Curve Cryptography
             (ECC) key is represented using the 'publicKey' described in
             [RFC5915]";
        }
        container certificate-chains certificates {
          description
            "Certificate chains
            "Certificates associated with this private key.  More
             than one chain certificate per key is enabled to support,
             for instance, a TPM-protected key that has associated
             both IDevID and LDevID certificates.";
          list certificate-chain certificate {
            key name;
            description
              "A certificate chain for this public private key.";
            leaf name {
              type string;
              description
                "An arbitrary name for the certificate chain. certificate.  The name
                 must be a unique across all private keys, not just within
                 this private key.";
            }
            leaf-list certificate
            leaf value {
              type binary;
              ordered-by user;
              description
               "An X.509 v3 certificate structure unsigned PKCS #7 SignedData structure, as specified
                by RFC
                 5280, Section 4 9.1 in RFC 2315, containing just certificates
                (no content, signatures, or CRLs), encoded using the ASN.1
                distinguished encoding rules (DER), as specified in
                ITU-T X.690.
                 The list of certificates that run from

                This structure contains, in order, the server certificate towards the
                itself and all intermediate certificates leading up
                to a trust anchor. anchor certificate.  The chain certificate MAY
                optionally include the trust anchor certificate itself."; certificate.";
              reference
                "RFC 5280:
                   Internet X.509 Public Key Infrastructure Certificate
                   and Certificate Revocation List (CRL) Profile. 2315:
                   PKCS #7: Cryptographic Message Syntax Version 1.5.
                 ITU-T X.690:
                   Information technology - ASN.1 encoding rules:
                   Specification of Basic Encoding Rules (BER),
                   Canonical Encoding Rules (CER) and Distinguished
                   Encoding Rules (DER).";
            }
          }
        }
        action generate-certificate-signing-request {
          description
            "Generates a certificate signing request structure for
             the associated private key using the passed subject and
             attribute values.  Please review both the Security
             Considerations and Design Considerations sections in
             RFC VVVV for more information regarding this action
             statement.";
          input {
            leaf subject {
              type binary;
              mandatory true;
              description
                "The 'subject' field from the CertificationRequestInfo
                 structure as specified by RFC 2986, Section 4.1 encoded
                 using the ASN.1 distinguished encoding rules (DER), as
                 specified in ITU-T X.690.";
              reference
                "RFC 2986:
                   PKCS #10: Certification Request Syntax Specification
                   Version 1.7.
                 ITU-T X.690:
                    Information technology - ASN.1 encoding rules:
                    Specification of Basic Encoding Rules (BER),
                    Canonical Encoding Rules (CER) and Distinguished
                    Encoding Rules (DER).";
            }
            leaf attributes {
              type binary;
              description
               "The 'attributes' field from the CertificationRequestInfo
                structure as specified by RFC 2986, Section 4.1 encoded
                using the ASN.1 distinguished encoding rules (DER), as
                specified in ITU-T X.690.";
              reference
                "RFC 2986:
                   PKCS #10: Certification Request Syntax Specification
                   Version 1.7.

                 ITU-T X.690:
                    Information technology - ASN.1 encoding rules:
                    Specification of Basic Encoding Rules (BER),
                    Canonical Encoding Rules (CER) and Distinguished
                    Encoding Rules (DER).";
            }
          }
          output {
            leaf certificate-signing-request {
              type binary;
              mandatory true;
              description
                "A CertificationRequest structure as specified by RFC
                 2986, Section 4.1 encoded using the ASN.1 distinguished
                 encoding rules (DER), as specified in ITU-T X.690.";
              reference
                "RFC 2986:
                   PKCS #10: Certification Request Syntax Specification
                   Version 1.7.
                 ITU-T X.690:
                    Information technology - ASN.1 encoding rules:
                    Specification of Basic Encoding Rules (BER),
                    Canonical Encoding Rules (CER) and Distinguished
                    Encoding Rules (DER).";

            }
          }
        }
      }

      action generate-private-key {
        description
          "Requests the device to generate a private key using the
           specified algorithm and key length.";
        input {
          leaf name {
            type string;
            mandatory true;
            description
              "The name this private-key should have when listed
               in /keystore/private-keys.  As such, the passed
               value must not match any existing 'name' value.";
          }
          leaf algorithm {
            type identityref {
              base "key-algorithm";
            }
            mandatory true;
            description
              "The algorithm to be used when generating the key.";
          }
          leaf key-length {
            type uint32;
            description
              "For algorithms that need a key length specified
               when generating the key.";
          }
        }
      }

      action load-private-key {
        description
          "Requests the device to load a private key";
        input {
          leaf name {
            type string;
            mandatory true;
            description
              "The name this private-key should have when listed
               in /keystore/private-keys.  As such, the passed
               value must not match any existing 'name' value.";
          }
          leaf private-key {
            type binary;
            mandatory true;
              description
                "An OneAsymmetricKey structure as specified by RFC
                 5958, Section 2 encoded using the ASN.1 distinguished
                 encoding rules (DER), as specified in ITU-T X.690.
                 Note that this is the raw private with no shrouding
                 to protect it.  The strength of this private key
                 MUST NOT be greater than the strength of the secure
                 connection over which it is communicated.  Devices
                 SHOULD fail this request if ever that happens.";
              reference
                "RFC 5958:
                    Asymmetric Key Packages
                 ITU-T X.690:
                    Information technology - ASN.1 encoding rules:
                    Specification of Basic Encoding Rules (BER),
                    Canonical Encoding Rules (CER) and Distinguished
                    Encoding Rules (DER).";
          }
        }
      }

    }

    list trusted-certificates
    }

    list trusted-certificates {
      key name;
      description
        "A list of trusted certificates.  These certificates
         can be used by a server to authenticate clients, or by
         clients to authenticate servers.  The certificates may
         be endpoint specific or for certificate authorities (to authorities,
         to authenticate many clients at once.  Each list of
         certificates SHOULD be specific to a purpose, as the
         list as a whole may be referenced by other modules.
         For instance, a NETCONF server model might point to
         a list of certificates to use when authenticating
         client certificates.";
      leaf name {
        type string;
        description
          "An arbitrary name for this list of trusted certificates.";

      }
      leaf description {
        type string;
        description
          "An arbitrary description for this list of trusted
           certificates.";
      }
      list trusted-certificate {
        key name;
        description
          "A trusted certificate for a specific use.  Note, this
           'certificate' is a list in order to encode any
           associated intermediate certificates.";
        leaf name {
          type string;
          description
            "An arbitrary name for this trusted certificate. Must
             be unique across all lists of trusted certificates
             (not just this list) so that a leafref to it from
             another module can resolve to unique values.";
        }
        leaf certificate {  // rename to 'data'?
          type binary;
          description
            "An X.509 v3 certificate structure as specified by RFC
             5280, Section 4 encoded using the ASN.1 distinguished
             encoding rules (DER), as specified in ITU-T X.690.";
          reference
            "RFC 5280:
               Internet X.509 Public Key Infrastructure Certificate
               and Certificate Revocation List (CRL) Profile.
             ITU-T X.690:
                Information technology - ASN.1 encoding rules:
                Specification of Basic Encoding Rules (BER),
                Canonical Encoding Rules (CER) and Distinguished
                Encoding Rules (DER).";
        }
      }
    }

    list trusted-ssh-host-keys trusted-host-keys {
      key name;
      description
        "A list of trusted host-keys.  These host-keys can be used
         by clients to authenticate SSH servers.  The host-keys are
         endpoint specific.  Each list of host-keys SHOULD be
         specific to a purpose, as the list as a whole may be
         referenced by other modules.  For instance, a NETCONF
         client model might point to a list of host-keys to use
         when authenticating servers host-keys.";
      leaf name {
        type string;
        description
          "An arbitrary name for this list of trusted SSH host keys.";
      }
      leaf description {
        type string;
        description
          "An arbitrary description for this list of trusted SSH host
           keys.";
      }
      list trusted-host-key {
        key name;
        description
          "A trusted host key.";
        leaf name {
          type string;
          description
            "An arbitrary name for this trusted host-key. Must be
             unique across all lists of trusted host-keys (not just
             this list) so that a leafref to it from another module
             can resolve to unique values.

             Note that, for when the SSH client is able to listen
             for call-home connections as well, there is no reference
             identifier (e.g., hostname, IP address, etc.) that it
             can use to uniquely identify the server with.  The
             call-home draft recommends SSH servers use X.509v3
             certificates (RFC6187) when calling home.";
        }
        leaf host-key {  // rename to 'data'?
          type binary;
          mandatory true;
          description  // is this the correct type?
            "An OneAsymmetricKey 'publicKey' structure as specified
             by RFC 5958, Section 2 encoded using the ASN.1
             distinguished encoding rules (DER), as specified
             in ITU-T X.690.";
          reference
            "RFC 5958:
                Asymmetric Key Packages
             ITU-T X.690:
                Information technology - ASN.1 encoding rules:
                Specification of Basic Encoding Rules (BER),
                Canonical Encoding Rules (CER) and Distinguished
                Encoding Rules (DER).";

        }
      }
    }

/*
Are the auth credentials truly limited to SSH?
Could they be used by an HTTP client to log into an HTTP server?
If truly just for SSH, maybe rename?
*/
    container user-auth-credentials
  }

  notification certificate-expiration {
    description
      "A list of user authentication credentials notification indicating that can be used
         by an SSH client to log into an SSH server, using any of
         the supported authentication methods (e.g., password,
         public key, client certificate, etc.).";
      list user-auth-credential {
        key username;
        description
          "The authentication credentials for a specific user.";
        leaf username {
          type string;
          description
            "The username of this user.  This will be the username
             used, for instance, to log into an SSH server.";
        }
        list auth-method {
          key priority;
          description
            "A method of authenticating as this user.";
          leaf priority {
            type uint8;
            description
              "When multiple authentication methods in this list are
               supported by the server, the one with the lowest priority
               value will be the one that is used.";
          }
          choice auth-type {
            description
              "The authentication type.";
            leaf-list certificate {
              type leafref {
                path "/keystore/private-keys/private-key/"
                     + "certificate-chains/certificate-chain/name";
              }
              ordered-by user;
              description
                "A list of references to certificates that can be used
                 for user authentication.  When multiple certificates
                 in this list supported by the server, the one that
                 comes before the others in the leaf-list will be
                 used.";
            }
            leaf-list public-key {
              type leafref {
                path "/keystore/private-keys/private-key/name";
              }
              ordered-by user;
              description
                "A list of references to public keys that can be used
                 for user authentication.  When multiple public keys
                 in this list supported by the server, the one that
                 comes before the others in the leaf-list will be
                 used.";
            }
            leaf ciphertext-password {
              type string;
              description
                "An ciphertext password.  The method of encipherment
                 and how that method can be determined from this
                 string is implementation-specific.";
            }
            leaf cleartext-password {
              type string;
              description
                "An cleartext password.";
            }
          }
        }

      }
    }
  }

  notification certificate-expiration {
    description
      "A notification indicating that a configured certificate is
       either about a configured certificate is
       either about to expire or has already expired.  When to send
       notifications is an implementation specific decision, but
       it is RECOMMENDED that a notification be sent once a month
       for 3 months, then once a week for four weeks, and then once
       a day thereafter.";
    leaf certificate {
      type instance-identifier;
      mandatory true;
      description
        "Identifies which certificate is expiring or is expired.";
    }
    leaf expiration-date {
      type yang:date-and-time;
      mandatory true;
      description
        "Identifies the expiration date on the certificate.";
    }
  }

}

<CODE ENDS>

3.  Design Considerations

   This document, along with four other drafts, was split out from the
   original draft "draft-ietf-netconf-server-model".  The split was made
   so that each draft would have better focus, and also becuase there
   was a desire to define client modules, in addition to server modules.
   The complete list of drafts that resulted from the split includes:

      - draft-ietf-netconf-keystore

      - draft-ietf-netconf-ssh-client-server

      - draft-ietf-netconf-tls-client-server

      - draft-ietf-netconf-netconf-client-server

      - draft-ietf-netconf-restconf-client-server

   This document uses PKCS #10 [RFC2986] for the "generate-certificate-
   signing-request" action.  The use of Certificate Request Message
   Format (CRMF) [RFC4211] was considered, but is was unclear if there
   was market demand for it, and so support for CRMF has been left out
   of this specification.  If it is desired to support CRMF in the
   future, placing a "choice" statement in both the input and output
   statements, along with an "if-feature" statement on the CRMF option,
   would enable a backwards compatible solution.

   This document puts a limit of the number of elliptical curves
   supported by default.  This was done to match industry trends in IETF
   best practice (e.g., matching work being done in TLS 1.3).  If
   additional algorithms are needed, they MAY be augmented in by another
   module, or added directly in a future version of this document.

   Both this document and Key Chain YANG Data Model
   [draft-ietf-rtgwg-yang-key-chain] regard a similar idea.  The authors
   looked at this and agree that they two modules server different
   purposes and hence not worth merging into one document.  To
   underscore this further, this document renamed its module from "ietf-
   keychain" to "ietf-keystore", to contrast it with the other
   document's module "ietf-key-chain".

   For the trusted-certificates list, Trust Anchor Format [RFC5914] was
   evaluated

   For the trusted-certificates list, Trust Anchor Format [RFC5914] was
   evaluated and deemed inappropriate due to this document's need to
   also support pinning.  That is, pinning a client-certificate to
   support NETCONF over TLS client authentication.

4.  Security Considerations

   This

   The YANG module defined in this document defines a keystore mechanism that is entrusted designed to be accessed
   via YANG based management protocols, such as NETCONF [RFC6241] and
   RESTCONF [RFC8040].  Both of these protocols have mandatory-to-
   implement secure transport layers (e.g., SSH, TLS) with mutual
   authentication.

   The NETCONF access control model (NACM) [RFC6536] provides the
   safe keeping means
   to restrict access for particular users to a pre-configured subset of private keys,
   all available protocol operations and the safe keeping content.

   There are a number of trusted
   certificates.  Nowhere data nodes defined in this API YANG module that are
   writable/creatable/deletable (i.e., config true, which is there an ability the
   default).  These data nodes may be considered sensitive or vulnerable
   in some network environments.  Write operations (e.g., edit-config)
   to access
   (read out) these data nodes without proper protection can have a private key once it negative
   effect on network operations.  These are the subtrees and data nodes
   and their sensitivity/vulnerability:

      /: The entire data tree defined by this module is known sensitive to
         write operations.  For instance, the keystore.  Further,
   associated public keys and attributes (e.g., algorithm name, key
   length, etc.) are read-only.  That said, addition or removal of
         keys, certificates, trusted anchors, etc., can dramatically
         alter the implemented security policy.  This being the case,
         the top-level node in this document allows for module is marked with the NACM value
         'default-deny-write'.

      /keystore/keys/key/private-key:  When writing this node,
         implementations MUST ensure that the strength of the key being
         configured is not greater than the strength of the underlying
         secure transport connection over which it is communicated.
         Implementations SHOULD fail the
   deletion write-request if ever the
         strength of the private keys key is greater then the strength of the
         underlying transport, and their certificates, as well alert the deletion client that the strength of trusted certificates.  Access control mechanisms (e.g., NACM
   [RFC6536]) MUST be
         the key may have been compromised.  Additionally, when deleting
         this node, implementations SHOULD automatically (without
         explicit request) zeroize these keys in place the most secure manner
         available, so as to authorize such client actions.
   Further, whilst prevent the remnants of their persisted
         storage locations from being analyzed in any meaningful way.

   Some of the readable data model allows for private keys and trusted
   certificates nodes in general to be deleted, implementations should this YANG module may be well
   aware that considered
   sensitive or vulnerable in some privates keys network environments.  It is thus
   important to control read access (e.g., those in a TPM) via get, get-config, or
   notification) to these data nodes.  These are the subtrees and some trusted
   certificates, data
   nodes and their sensitivity/vulnerability:

      /keystore/keys/key/private-key:  This node is additionally
         sensitive to read operations such that, in normal use cases, it
         should never be deleted, regardless if the
   authorization mechanisms would generally allow returned to a client.  The best reason for such actions.
         returning this node is to support backup/restore type
         workflows.  This being the case, this node is marked with the
         NACM value 'default-deny-all'.

   Some of the RPC operations in this YANG module may be considered
   sensitive or vulnerable in some network environments.  It is thus
   important to control access to these operations.  These are the
   operations and their sensitivity/vulnerability:

      generate-certificate-signing-request:  For the "generate-certificate-signing-request" action, this RPC operation, it
         is RECOMMENDED that devices implement implementations assert channel binding
         [RFC5056], so as to ensure that the application layer that sent
         the request is the same as the device authenticated in the
         secure transport layer was established.

   This document defines a data model that includes a list of private
   keys.  These private keys MAY be deleted using standard NETCONF or
   RESTCONF operations (e.g., <edit-config>).  Implementations SHOULD
   automatically (without explicit request) zeroize these keys in the
   most secure manner available, so as to prevent the remnants of their
   persisted storage locations from being analyzed in any meaningful
   way.

   The keystore module define within this document defines the "load-
   private-key" action enabling a device to load a client-supplied
   private key.  This is a private key with no shrouding to protect it.
   The strength of this private key MUST NOT be greater than the
   strength of the underlying secure transport connection over which it
   is communicated.  Devices SHOULD fail this request if ever the
   strength of the private key is greater then the strength of the
   underlying transport.

5.  IANA Considerations

5.1.  The IETF XML Registry

   This document registers one URI in the IETF XML registry [RFC2119]. [RFC3688].
   Following the format in [RFC3688], the following registration is
   requested:

      URI: urn:ietf:params:xml:ns:yang:ietf-keystore
      Registrant Contact: The NETCONF WG of the IETF.
      XML: N/A, the requested URI is an XML namespace.

5.2.  The YANG Module Names Registry

   This document registers one YANG module in the YANG Module Names
   registry [RFC6020].  Following the format in [RFC6020], the the
   following registration is requested:

      name:         ietf-keystore
      namespace:    urn:ietf:params:xml:ns:yang:ietf-keystore
      prefix:       kc
      reference:    RFC VVVV

6.  Acknowledgements

   The authors would like to thank for following for lively discussions
   on list and in the halls (ordered by last name): Andy Bierman, Martin
   Bjorklund, Benoit Claise, Mehmet Ersue, David Lamparter, Alan Luchuk,
   Ladislav Lhotka, Radek Krejci, Tom Petch, Juergen Schoenwaelder; Phil
   Shafer, Sean Turner, and Bert Wijnen.

7.  References

7.1.  Normative References

   [draft-ietf-netconf-restconf]
              Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", draft-ieft-netconf-restconf-04 (work in
              progress), 2014.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC2986]  Nystrom, M. and B. Kaliski, "PKCS #10: Certification
              Request Syntax Specification Version 1.7", RFC 2986,
              DOI 10.17487/RFC2986, November 2000,
              <http://www.rfc-editor.org/info/rfc2986>.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <http://www.rfc-editor.org/info/rfc5280>.

   [RFC5958]  Turner, S., "Asymmetric Key Packages", RFC 5958,
              DOI 10.17487/RFC5958, August 2010,
              <http://www.rfc-editor.org/info/rfc5958>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <http://www.rfc-editor.org/info/rfc6020>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A.

   [RFC6536]  Bierman, Ed., A. and M. Bjorklund, "Network Configuration
              Protocol
              (NETCONF)", (NETCONF) Access Control Model", RFC 6241, 6536,
              DOI 10.17487/RFC6241, June 2011,
              <http://www.rfc-editor.org/info/rfc6241>. 10.17487/RFC6536, March 2012,
              <http://www.rfc-editor.org/info/rfc6536>.

7.2.  Informative References

   [draft-ietf-rtgwg-yang-key-chain]
              Lindem, A., Qu, Y., Yeung, D., Chen, I., Zhang, J., and Y.
              Yang, "Key Chain YANG Data Model", draft-ietf-rtgwg-yang-
              key-chain (work in progress), 2016,
              <https://datatracker.ietf.org/html/draft-ietf-rtgwg-yang-
              key-chain>.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <http://www.rfc-editor.org/info/rfc3688>.

   [RFC4211]  Schaad, J., "Internet X.509 Public Key Infrastructure
              Certificate Request Message Format (CRMF)", RFC 4211,
              DOI 10.17487/RFC4211, September 2005,
              <http://www.rfc-editor.org/info/rfc4211>.

   [RFC5056]  Williams, N., "On the Use of Channel Bindings to Secure
              Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
              <http://www.rfc-editor.org/info/rfc5056>.

   [RFC5914]  Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor
              Format", RFC 5914, DOI 10.17487/RFC5914, June 2010,
              <http://www.rfc-editor.org/info/rfc5914>.

   [RFC6536]  Bierman, A. and M.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol (NETCONF) Access Control Model",
              (NETCONF)", RFC 6536, 6241, DOI 10.17487/RFC6536, March 2012,
              <http://www.rfc-editor.org/info/rfc6536>. 10.17487/RFC6241, June 2011,
              <http://www.rfc-editor.org/info/rfc6241>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <http://www.rfc-editor.org/info/rfc8040>.

   [Std-802.1AR-2009]
              IEEE SA-Standards Board, "IEEE Standard for Local and
              metropolitan area networks - Secure Device Identity",
              December 2009, <http://standards.ieee.org/findstds/
              standard/802.1AR-2009.html>.

Appendix A.  Change Log

A.1.  server-model-09 to 00

   o  This draft was split out from draft-ietf-netconf-server-model-09.

   o  Removed key-usage parameter from generate-private-key action.

   o  Now /private-keys/private-key/certificates/certificate/name must
      be globally unique (unique across all private keys).

   o  Added top-level 'trusted-ssh-host-keys' and 'user-auth-
      credentials' to support SSH client modules.

A.2.  keychain-00 to keystore-00

   o  Renamed module from "keychain" to "keystore" (Issue #3)

A.3.  00 to 01

   o  Replaced the 'certificate-chain' structures with PKCS#7
      structures.  (Issue #1)

   o  Added 'private-key' as a configurable data node, and removed the
      'generate-private-key' and 'load-private-key' actions.  (Issue #2)

   o  Moved 'user-auth-credentials' to the ietf-ssh-client module.
      (Issues #4 and #5)

Appendix B.  Open Issues

   Please see: https://github.com/netconf-wg/keystore/issues.

Authors' Addresses

Author's Address

   Kent Watsen
   Juniper Networks

   EMail: kwatsen@juniper.net

   Gary Wu
   Cisco Networks

   EMail: garywu@cisco.com