draft-ietf-idr-ls-trill-01.txt   draft-ietf-idr-ls-trill-02.txt 
IDR Working Group W. Hao
D. Eastlake
Internet Draft Huawei
Intended status: Standard Track S. Hares
Hickory Hill Consulting
S.Gupta
IP Infusion
M. Durrani
Cisco
Y. Li
Huawei
Expires: February 2017 August 16, 2016
IDR Working Group W,. Hao Distribution of TRILL Link-State using BGP
Internet-Draft D. Eastlake draft-ietf-idr-ls-trill-02.txt
Intended status: Standards Track S. Hares
Expires: September 21, 2016 Huawei Technologies
B. Pithawala
IP Infusion
M. Durrani
Cisco Systems
Y. Li
Huawei Technologies
March 20, 2016
Distribution of TRILL Link-State using BGP
draft-ietf-idr-ls-trill-01.txt
Abstract Abstract
This draft describes a TRILL link state and MAC address reachability This draft describes a TRILL link state and MAC address reachability
information distribution mechanism using a BGP LS extension. information distribution mechanism using a BGP LS extension.
External components such as an SDN Controller can use the information External components such as an SDN Controller can use the
for topology visibility, troubleshooting, network automation, etc. information for topology visibility, troubleshooting, network
automation, etc.
Status of This Memo Status of this Memo
This Internet-Draft is submitted in full conformance with the This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79. provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF), its areas, and its working groups. Note that
working documents as Internet-Drafts. The list of current Internet- other groups may also distribute working documents as Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/. Drafts.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six
and may be updated, replaced, or obsoleted by other documents at any months and may be updated, replaced, or obsoleted by other documents
time. It is inappropriate to use Internet-Drafts as reference at any time. It is inappropriate to use Internet-Drafts as
material or to cite them other than as "work in progress." reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 21, 2016. The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
Copyright Notice Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with
to this document. Code Components extracted from this document must respect to this document. Code Components extracted from this
include Simplified BSD License text as described in Section 4.e of document must include Simplified BSD License text as described in
the Trust Legal Provisions and are provided without warranty as Section 4.e of the Trust Legal Provisions and are provided without
described in the Simplified BSD License. warranty as described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Introduction ................................................ 2
2. Conventions used in this document . . . . . . . . . . . . . . 3 2. Conventions used in this document............................ 4
3. Carrying Trill Link-State Information in BGP . . . . . . . . 4 3. Carrying TRILL Link-State Information in BGP................. 4
3.1. Node Descriptors . . . . . . . . . . . . . . . . . . . . 5 3.1. Node Descriptors........................................ 6
3.1.1. IGP Router-ID . . . . . . . . . . . . . . . . . . . . 6 3.1.1. IGP Router-ID...................................... 6
3.2. MAC Address Descriptors . . . . . . . . . . . . . . . . . 6 3.2. MAC Address Descriptors................................. 6
3.2.1. MAC-Reachability TLV . . . . . . . . . . . . . . . . 6 3.2.1. MAC-Reachability TLV............................... 7
3.3. BGP-LS attribute . . . . . . . . . . . . . . . . . . . . 7 3.3. The BGP-LS Attribute.................................... 8
3.3.1. Node Attribute TLVs . . . . . . . . . . . . . . . . . 7 3.3.1. Node Attribute TLVs................................ 8
3.3.2. Link Attribute TLVs . . . . . . . . . . . . . . . . . 8 3.3.1.1. Node Flag Bits TLV............................ 8
4. Operational Considerations . . . . . . . . . . . . . . . . . 8 3.3.1.2. Opaque Node Attribute TLV..................... 8
5. Security Considerations . . . . . . . . . . . . . . . . . . . 10 3.3.2. Link Attribute TLVs................................ 9
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 10 4. Operational Considerations................................... 9
7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 10 5. Security Considerations..................................... 10
8. Normative References . . . . . . . . . . . . . . . . . . . . 10 6. IANA Considerations ........................................ 11
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 11 7. References ................................................. 11
7.1. Normative References................................... 11
7.2. Informative References................................. 12
8. Acknowledgments ............................................ 12
1. Introduction 1. Introduction
BGP has been extended to distribute IGP link-state and traffic BGP has been extended to distribute IGP link-state and traffic
engineering information to some external components [RFC7752] such as engineering information to some external components [I-D.ietf-idr-
the PCE and ALTO servers. The information can be used by these ls-distribution], such as the PCE and ALTO servers. The information
external components to compute a MPLS-TE path across IGP areas, can be used by these external components to compute a MPLS-TE path
visualize and abstract network topology, and the like. across IGP areas, visualize and abstract network topology, and the
like.
TRILL (Transparent Interconnection of Lots of Links) protocol TRILL (Transparent Interconnection of Lots of Links) protocol
[RFC6325] provides a solution for least cost transparent routing in [RFC6325] provides a solution for least cost transparent routing in
multi-hop networks with arbitrary topologies and link technologies, multi-hop networks with arbitrary topologies and link technologies,
using [IS-IS] [RFC7176] link-state routing and a hop count. TRILL using [IS-IS] [RFC7176] link-state routing and a hop count. TRILL
switches are sometimes called RBridges (Routing Bridges). switches are sometimes called RBridges (Routing Bridges).
The TRILL protocol has been deployed in many data center networks. The TRILL protocol has been deployed in many data center networks.
Data center automation is a vital step to increase the speed and Data center automation is a vital step to increase the speed and
agility of business. An SDN controller as an external component agility of business. An SDN controller as an external component
normally can be used to provide centralized control and automation normally can be used to provide centralized control and automation
for the data center network. Making a holistic view of whole network for the data center network. Making a holistic view of whole network
topology available to the SDN controller is an important part for topology available to the SDN controller is an important part for
data center network automation and troubleshooting. data center network automation and troubleshooting.
+-------------+ +-------------+
| SDN | | SDN |
--------| Controller |-------- --------| Controller |--------
| +-------------+ | | +-------------+ |
| | | |
+ + + + + + + +
+ +-----------+ + + +-----------+ +
| | | |
+--------+ |IP Network | +--------+ +--------+ |IP Network | +--------+
| | +----+ +----+ | | | | +----+ +----+ | |
+---+ +---+ | | | | | | | | +---+ +---+ +---+ +---+ | | | | | | | | +---+ +---+
|ES1|-|RB1|-| Area 1 |-|BRB1| |BRB2|-| Area 2 |-|RB2|-|ES2| |ES1|-|RB1|-| Area 1 |-|BRB1| |BRB2|-| Area 2 |-|RB2|-|ES2|
+---+ +---+ | | +----+ +----+ | | +---+ +---+ +---+ +---+ | | +----+ +----+ | | +---+ +---+
| | | | | | | | | | | |
+--------+ +-----------+ +--------+ +--------+ +-----------+ +--------+
|<----TRILL ------>|<IP tunnel>|<-----TRILL ----->| |<----TRILL ------>|<IP tunnel>|<-----TRILL ----->|
Figure 1: TRILL interconnection Figure 1: TRILL interconnection
In Data Center interconnection scenario illustrated in figure 1, a In Data Center interconnection scenario illustrated in figure 1, a
single SDN Controller or network management system (NMS) can be used single SDN Controller or network management system (NMS) can be used
for end-to-end network management. End-to-end topology visibility on for end-to-end network management. End-to-end topology visibility on
the SDN controller or NMS is very useful for whole network automation the SDN controller or NMS is very useful for whole network
and troubleshooting. BGP LS can be used by the external SDN automation and troubleshooting. BGP LS can be used by the external
controller to collect multiple TRILL domain's link-state. SDN controller to collect multiple TRILL domain's link-state.
If ESADI (End Station Address Distribution Information) protocol
[RFC7357] is used for control plane MAC learning in each data center,
BGP LS also can be used for MAC address reachability information BGP LS also can be used for MAC address reachability information
synchronization across multiple TRILL domains. End-to-end unicast synchronization across multiple TRILL domains. The transported MAC
forwarding paths can be calculated based on the synchronized reachability information and the like is for telemetry purposes and
information. for use by SDN controller(s) where the coordination or protocol
between the SDN controllers is out of scope.
This document describes the detailed BGP LS extension mechanisms for This document describes the detailed BGP LS extension mechanisms for
TRILL link state and MAC address reachability information TRILL link state and MAC address reachability information
distribution. distribution.
2. Conventions used in this document 2. Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] document are to be interpreted as described in [RFC2119].
BGP - Border Gateway Protocol BGP - Border Gateway Protocol
BGP-LS - BGP Link-State BGP-LS - BGP Link-State
Data label - VLAN or FGL (Fine Grained Label) [RFC7172]
Data label - VLAN or FGL (Fine Grained Label [RFC7172])
IS - Intermediate System (for this document, all relevant IS - Intermediate System (for this document, all relevant
intermediate systems are RBridges). intermediate systems are RBridges)
NLRI - Network Layer Reachability Information NLRI - Network Layer Reachability Information
SDN - Software Defined Networking SDN - Software Defined Networking
RBridge - A device implementing the TRILL protocol RBridge - A device implementing the TRILL protocol
TRILL - Transparent Interconnection of Lots of Links TRILL - Transparent Interconnection of Lots of Links
3. Carrying Trill Link-State Information in BGP 3. Carrying TRILL Link-State Information in BGP
In [RFC7752], four NLRI types are defined as follows: Node NLRI, Link In [I-D.ietf-idr-ls-distribution], four NLRI types are defined as
NLRI, IPv4 Topology Prefix NLRI and IPv6 Topology Prefix NLRI. For follows: Node NLRI, Link NLRI, IPv4 Topology Prefix NLRI and IPv6
TRILL link-state distribution, the Node NLRI and Link NLRI are Topology Prefix NLRI. For TRILL link-state distribution, the Node
extended to carry layer 3 gateway role and link MTU information. NLRI and Link NLRI are extended to carry layer 3 gateway role and
TRILL specific attributes are carried using opaque Node Attribute link MTU information. TRILL specific attributes are carried using
TLVs, such as nickname, distribution tree number and identifiers, opaque Node Attribute TLVs, such as nickname, distribution tree
interested VLANs/Fine Grained Label, and multicast group address, and number and identifiers, interested VLANs/Fine Grained Label, and
etc. multicast group address, etc.
To differentiate TRILL protocol from layer 3 IGP protocol, a new To differentiate TRILL protocol from layer 3 IGP protocol, a new
TRILL Protocol-ID is defined. TRILL Protocol-ID is defined.
+-------------+----------------------------------+ +-------------+----------------------------------+
| Protocol-ID | NLRI information source protocol | | Protocol-ID | NLRI information source protocol |
+-------------+----------------------------------+ +-------------+----------------------------------+
| 1 | IS-IS Level 1 | | 1 | IS-IS Level 1 |
| 2 | IS-IS Level 2 | | 2 | IS-IS Level 2 |
| 3 | OSPFv2 | | 3 | OSPFv2 |
| 4 | Direct | | 4 | Direct |
| 5 | Static configuration | | 5 | Static configuration |
| 6 | OSPFv3 | | 6 | OSPFv3 |
| TBD | TRILL | | TBD | TRILL |
+-------------+----------------------------------+ +-------------+----------------------------------+
Table 1: Protocol Identifiers Table 1: Protocol Identifiers
ESADI (End Station Address Distribution Information) protocol ESADI (End Station Address Distribution Information) protocol
[RFC7357] is a per data label control plane MAC learning solution. [RFC7357] is a per data label control plane MAC learning solution.
MAC address reachability information is carried in ESADI packets. MAC address reachability information is carried in ESADI packets.
Compared with data plane MAC learning solution, ESADI protocol has Compared with data plane MAC learning solution, ESADI protocol has
security and fast update advantage that are pointed out in [RFC7357]. security and fast update advantage that are pointed out in [RFC7357].
For an RBridge that is announcing participation in ESADI, the RBridge For an RBridge that is announcing participation in ESADI, the
can distribute MAC address reachability information to external RBridge can distribute MAC address reachability information to
components using BGP. A new NLRI type of ''MAC Reachability NLRI'' external components using BGP. A new NLRI type of ''MAC Reachability
is requested for the MAC address reachability distribution. NLRI'' is requested for the MAC address reachability distribution.
+------+---------------------------+ +------+---------------------------+
| Type | NLRI Type | | Type | NLRI Type |
+------+---------------------------+ +------+---------------------------+
| 1 | Node NLRI | | 1 | Node NLRI |
| 2 | Link NLRI | | 2 | Link NLRI |
| 3 | IPv4 Topology Prefix NLRI | | 3 | IPv4 Topology Prefix NLRI |
| 4 | IPv6 Topology Prefix NLRI | | 4 | IPv6 Topology Prefix NLRI |
| TBD | MAC Reachability NLRI | | TBD | MAC Reachability NLRI |
+------+---------------------------+ +------+---------------------------+
Table 2: NLRI Types Table 2: NLRI Types
The MAC Reachability NLRI uses the format as shown in the following The MAC Reachability NLRI uses the format as shown in the following
figure. figure.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
| Protocol-ID | | Protocol-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | | Identifier |
| (64 bits) | | (64 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Local Node Descriptor (variable) // // Local Node Descriptor (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// MAC Address Descriptors (variable) // // MAC Address Descriptors (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: The MAC Reachability NLRI format Figure 2: The MAC Reachability NLRI format
3.1. Node Descriptors 3.1. Node Descriptors
The Node Descriptor Sub-TLV types include Autonomous System and BGP- The Node Descriptor Sub-TLV types include Autonomous System and BGP-
LS Identifier, iS-IS Area-ID and IGP Router-ID. TRILL uses a fixed LS Identifier, IS-IS Area-ID and IGP Router-ID. TRILL uses a fixed
zero Area Address as specified in [RFC6325], Section 4.2.3. This is zero Area Address as specified in [RFC6325], Section 4.2.3. This is
encoded in a 4-byte Area Address TLV (TLV #1) as follows: encoded in a 4-byte Area Address TLV (TLV #1) as follows:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x01, Area Address Type | (1 byte) | 0x01, Area Address Type | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x02, Length of Value | (1 byte) | 0x02, Length of Value | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x01, Length of Address | (1 byte) | 0x01, Length of Address | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x00, zero Area Address | (1 byte) | 0x00, zero Area Address | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Area Address TLV Figure 3: Area Address TLV
3.1.1. IGP Router-ID 3.1.1. IGP Router-ID
Similar to layer 3 IS-IS, TRILL protocol uses 7-octet "IS-IS ID" as Similar to layer 3 IS-IS, TRILL protocol uses 7-octet "IS-IS ID" as
the identity of an RBridge or a pseudonode, IGP Router ID sub-TLV in the identity of an RBridge or a pseudonode, IGP Router ID sub-TLV in
Node Descriptor TLVs contains the 7-octet "IS-IS ID". In TRILL Node Descriptor TLVs contains the 7-octet "IS-IS ID". In TRILL
network, each RBridge has a unique 48-bit (6-octet) IS-IS System ID. network, each RBridge has a unique 48-bit (6-octet) IS-IS System ID.
This ID may be derived from any of the RBridge's unique MAC addresses This ID may be derived from any of the RBridge's unique MAC
or configured. A pseudonode is assigned a 7-octet ID by the DRB addresses or configured. A pseudonode is assigned a 7-octet ID by
(Designated RBridge) that created it, the DRB is similar to the the DRB (Designated RBridge) that created it, the DRB is similar to
"Designated Intermediate System" (DIS) corresponding to a LAN. the "Designated Intermediate System" (DIS) corresponding to a LAN.
3.2. MAC Address Descriptors 3.2. MAC Address Descriptors
The ''MAC Address Descriptor'' field is a set of Type/Length/Value The ''MAC Address Descriptor'' field is a set of Type/Length/Value
(TLV) triplets. ''MAC Address Descriptor'' TLVs uniquely identify an (TLV) triplets. ''MAC Address Descriptor'' TLVs uniquely identify an
MAC address reachable by a Node. The following attributes TLVs are MAC address reachable by a Node. The following attributes TLVs are
defined: defined:
+--------------+-----------------------+----------+-----------------+ +--------------+-----------------------+----------+-----------------+
| TLV Code | Description | Length | Value defined | | TLV Code | Description | Length | Value defined |
| Point | | | in: | | Point | | | in: |
+--------------+-----------------------+----------+-----------------+ +--------------+-----------------------+----------+-----------------+
| 1 | MAC-Reachability | variable | section 3.2.1 | | 1 | MAC-Reachability | variable | section 3.2.1 |
+--------------+-----------------------+----------+-----------------+ +--------------+-----------------------+----------+-----------------+
Table 3: MAC Address Descriptor TLVs Table 3: MAC Address Descriptor TLVs
3.2.1. MAC-Reachability TLV 3.2.1. MAC-Reachability TLV
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
| Type= MAC-RI | (1 byte) | Type= MAC-RI | (1 byte)
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
| Length | (1 byte) | Length | (1 byte)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+
|V|F| RESV | Data Label | (4 bytes) |V|F| RESV | Data Label | (4 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC (1) (6 bytes) | | MAC (1) (6 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 7, line 8 skipping to change at page 7, line 37
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC (N) (6 bytes) | | MAC (N) (6 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: MAC-Reachability TLV format Figure 4: MAC-Reachability TLV format
Length is 4 plus a multiple of 6. Length is 4 plus a multiple of 6.
The bits of 'V' and 'F' are used to identify Data Label type and are The bits of 'V' and 'F' are used to identify Data Label type and are
defined as follows: defined as follows:
+----------+-------------------------+ +----------+-------------------------+
| Bit | Description | | Bit | Description |
+----------+-------------------------+ +----------+-------------------------+
| 'V' | VLAN | | 'V' | VLAN |
| 'F' | Fine Grained Label | | 'F' | Fine Grained Label |
+----------+-------------------------+ +----------+-------------------------+
Table 4: Data Label Type Bits Definitions Table 4: Data Label Type Bits Definitions
Notes: If BGP LS is used for NVO3 network MAC address distribution Notes: If BGP LS is used for NVO3 network MAC address distribution
between external SDN Controller and NVE, Data Label can be used to between external SDN Controller and NVE, Data Label can be used to
represent 24 bits VN ID. represent 24 bits VN ID.
3.3. BGP-LS attribute 3.3. The BGP-LS Attribute
3.3.1. Node Attribute TLVs 3.3.1. Node Attribute TLVs
3.3.1.1. Node Flag Bits TLV 3.3.1.1. Node Flag Bits TLV
A new Node Flag bit is added as follows: A new Node Flag bit is added as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|O|T|E|B|G| Reserved | |O|T|E|B|G| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Node Flag Bits TLV format Figure 5: Node Flag Bits TLV format
The new bit and remaining reserved bits are defined as follows: The new bit and remaining reserved bits are defined as follows:
+----------+----------------------------+-----------+ +----------+----------------------------+-----------+
| Bit | Description | Reference | | Bit | Description | Reference |
+----------+----------------------------+-----------+ +----------+----------------------------+-----------+
| 'G' | Layer 3 Gateway Bit | [RFC7176] | | 'G' | Layer 3 Gateway Bit | [RFC7176] |
| Reserved | Reserved for future use | | | Reserved | Reserved for future use | |
+----------+----------------------------+-----------+ +----------+----------------------------+-----------+
Table 5: Node Flag Bits Definitions Table 5: Node Flag Bits Definitions
3.3.1.2. Opaque Node Attribute TLV 3.3.1.2. Opaque Node Attribute TLV
The Opaque Node Attribute TLV is used as the envelope to The Opaque Node Attribute TLV is used as the envelope to
transparently carry TRILL specific information. In [RFC7176], there transparently carry TRILL specific information. In [RFC7176], there
are the following Sub-TLVs in the Router Capability and MT- are the following Sub-TLVs in the Router Capability and MT-
Capability TLVs and the Group Address (GADDR) TLV that need to be Capability TLVs and the Group Address (GADDR) TLV that need to be
carried. Future possible TRILL TLVs/Sub-TLVs extension also can be carried. Future possible TRILL TLVs/Sub-TLVs extension also can be
carried using the Opaque Node Attribute TLV. carried using the Opaque Node Attribute TLV.
Descriptions IS-IS TLV/Sub-TLV Descriptions IS-IS TLV/Sub-TLV
------------------------------------ ------------------------------------
TRILL-VER 22/13 TRILL-VER 22/13
NICKNAME 22/6 NICKNAME 22/6
TREES 22/7 TREES 22/7
TREE-RT-IDs 22/8 TREE-RT-IDs 22/8
TREE-USE-IDs 22/9 TREE-USE-IDs 22/9
INT-VLAN 22/10 INT-VLAN 22/10
VLAN-GROUP 22/14 VLAN-GROUP 22/14
INT-LABEL 22/15 INT-LABEL 22/15
RBCHANNELS 22/16 RBCHANNELS 22/16
AFFINITY 22/17 AFFINITY 22/17
LABEL-GROUP 22/18 LABEL-GROUP 22/18
GMAC-ADDR 142/1 GMAC-ADDR 142/1
GIP-ADDR 142/2 GIP-ADDR 142/2
GIPV6-ADDR 142/3 GIPV6-ADDR 142/3
GLMAC-ADDR 142/4 GLMAC-ADDR 142/4
GLIP-ADDR 142/5 GLIP-ADDR 142/5
GLIPV6-ADDR 142/6 GLIPV6-ADDR 142/6
Table 6: TRILL TLVs/Sub-TLVs Table 6: TRILL TLVs/Sub-TLVs
3.3.2. Link Attribute TLVs 3.3.2. Link Attribute TLVs
Link attribute TLVs are TLVs that may be encoded in the BGP-LS Link attribute TLVs are TLVs that may be encoded in the BGP-LS
attribute with a link NLRI. Besides the TLVs that has been defined attribute with a link NLRI. Besides the TLVs that has been defined
in [RFC7752] section 3.3.2 table 9, the following 'Link Attribute' in [I-D.ietf-idr-ls-distribution] section 3.3.2 table 9, the
TLV is provided for TRILL. following 'Link Attribute' TLV is provided for TRILL.
+-----------+----------------+--------------+------------------+ +-----------+----------------+--------------+------------------+
| TLV Code | Description | IS-IS TLV | Defined in: | | TLV Code | Description | IS-IS TLV | Defined in: |
| Point | | /Sub-TLV | | | Point | | /Sub-TLV | |
+-----------+----------------+--------------+------------------+ +-----------+----------------+--------------+------------------+
| TBD | Link MTU | 22/28 | [RFC7176]/2.4 | | TBD | Link MTU | 22/28 | [RFC7176]/2.4 |
+-----------+----------------+--------------+------------------+ +-----------+----------------+--------------+------------------+
Table 7: Link Attribute TLVs Table 7: Link Attribute TLVs
4. Operational Considerations 4. Operational Considerations
This document does not require any MIB or Yang model to configure This document does not require any MIB or Yang model to configure
operational parameters. operational parameters.
An implementation of this specification[idr-ls-trill], MUST do the Any implementation of the protocol in this specification (i.e. that
distributes TRILL Link-State information using BGP), MUST do the
malformed attribute checks below, and if it detects a malformed malformed attribute checks below, and if it detects a malformed
attribute, it should use the 'Attribute Discard' action per [RFC7606] attribute, it should use the 'Attribute Discard' action per [I-
section 2. D.ietf.idr-error-handling] section 2.
An implementation MUST perform the following expanded [BGP-LS] An implementation MUST perform the following expanded [BGP-LS]
syntactic check for determining if the message is malformed: syntactic check for determining if the message is malformed:
o Does the sum of all TLVs found in the BGP LS attribute correspond o Does the sum of all TLVs found in the BGP LS attribute
to the BGP LS path attribute length ? correspond to the BGP LS path attribute length ?
o Does the sum of all TLVs found in the BGP MP_REACH_NLRI attribute o Does the sum of all TLVs found in the BGP MP_REACH_NLRI
correspond to the BGP MP_REACH_NLRI length ? attribute correspond to the BGP MP_REACH_NLRI length ?
o Does the sum of all TLVs found in the BGP MP_UNREACH_NLRI o Does the sum of all TLVs found in the BGP MP_UNREACH_NLRI
attribute correspond to the BGP MP_UNREACH_NLRI length ? attribute correspond to the BGP MP_UNREACH_NLRI length ?
o Does the sum of all TLVs found in a Node-, Link, prefix (IPv4 or o Does the sum of all TLVs found in a Node-, Link, prefix (IPv4
IPv6) NLRI attribute correspond to the Node-, Link- or Prefix or IPv6) NLRI attribute correspond to the Node-, Link- or Prefix
Descriptors 'Total NLRI Length' field ? Descriptors 'Total NLRI Length' field ?
o Does any fixed length TLV correspond to the TLV Length field in o Does any fixed length TLV correspond to the TLV Length field
this document ? in this document ?
o Does the sum of MAC reachability TLVs equal the length of the o Does the sum of MAC reachability TLVs equal the length of the
field? field?
In addition, the following checks need to be made for the fields In addition, the following checks need to be made for the fields
specific to the BGP LS for TRILL: specific to the BGP LS for TRILL:
o PROTOCOL ID is TRILL, PROTOCOL ID is TRILL
o NLRI types are valid per table 2, NLRI types are valid per table 2
o MAC Reachability NLRI has correct format including: MAC Reachability NLRI has correct format including:
* Identifier (64 bits), o Identifier (64 bits),
* local node descriptor with AREA address TLV has the form found o local node descriptor with AREA address TLV has the form
in figure 2, found in figure 2
o opaque TLV support the range of ISIS-TLV/SUB-TLV shown in table 3, opaque TLV support the range of ISIS-TLV/SUB-TLV shown in
and link TLVs support the range in figure 8. table 3, and link TLVs support the range in figure 8.
5. Security Considerations 5. Security Considerations
Procedures and protocol extensions defined in this document do not Procedures and protocol extensions defined in this document do not
affect the BGP security model. See [RFC6952] for details. affect the BGP security model. See [RFC6952] for details.
6. IANA Considerations 6. IANA Considerations
This section complies with [RFC7153]. For all of the following For all of the following assignments, [this document] is the
assignments, [this document] is the reference. reference.
IANA is requested to requested to assign one Protocol-ID for "TRILL" IANA is requested to assign one Protocol-ID for "TRILL" from the
from the BGP-LS registry of Protocol-IDs BGP-LS registry of Protocol-IDs.
IANA is requested to assign one NLRI Type for "MAC Reachability" from IANA is requested to assign one NLRI Type for "MAC Reachability"
the BGP-LS registry of NLRI Types. from the BGP-LS registry of NLRI Types.
IANA is requested to assign one Node Flag bit for "Layer 3 Gateway" IANA is requested to assign one Node Flag bit for "Layer 3 Gateway"
from the BGP-LS registry of BGP-LS Attribute TLVs. from the BGP-LS registry of BGP-LS Attribute TLVs.
IANA is requested to assign one new TLV type for "Link MTU" from the IANA is requested to assign one new TLV type for "Link MTU" from the
BGP-LS registry of BGP-LS Attribute TLVs. BGP-LS registry of BGP-LS Attribute TLVs.
7. Acknowledgements 7. References
Authors like to thank Andrew Qu, Jie Dong, Mingui Zhang, Qin Wu,
Shunwan Zhuang, Zitao Wang, Lili Wang for their valuable inputs.
8. Normative References 7.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [1] [I-D.ietf-idr-ls-distribution] Gredler, H., Medved, J.,
Requirement Levels", BCP 14, RFC 2119, Previdi, S., Farrel, A., and S.Ray, "North-Bound Distribution of
DOI 10.17487/RFC2119, March 1997, Link-State and TE Information using BGP", draft-ietf-idr-ls-
<http://www.rfc-editor.org/info/rfc2119>. distribution-10(work in progress), January 2015.
[RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A [2] [I-D.ietf.idr-error-handling] Enke, C., John, S., Pradosh, M.,
Border Gateway Protocol 4 (BGP-4)", RFC 4271, Keyur,P., "Revised Error Handling for BGP UPDATE Messages",
DOI 10.17487/RFC4271, January 2006, draft-ietf-idr-error-handling-19(work in progress), April 2015.
<http://www.rfc-editor.org/info/rfc4271>.
[RFC6325] Perlman, R., Eastlake 3rd, D., Dutt, D., Gai, S., and A. [3] [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Ghanwani, "Routing Bridges (RBridges): Base Protocol Requirement Levels", BCP 14, RFC 2119, March 1997.
Specification", RFC 6325, DOI 10.17487/RFC6325, July 2011,
<http://www.rfc-editor.org/info/rfc6325>.
[RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of [4] [RFC6325] Perlman, R., Eastlake 3rd, D., Dutt, D., Gai, S.,and
BGP, LDP, PCEP, and MSDP Issues According to the Keying A. Ghanwani, "Routing Bridges (RBridges): Base Protocol
and Authentication for Routing Protocols (KARP) Design Specification", RFC 6325, July 2011.
Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013,
<http://www.rfc-editor.org/info/rfc6952>.
[RFC7153] Rosen, E. and Y. Rekhter, "IANA Registries for BGP [5] [RFC7172] Eastlake 3rd, D., Zhang, M., Agarwal, P., Perlman,
Extended Communities", RFC 7153, DOI 10.17487/RFC7153, R., and D. Dutt, "Transparent Interconnection of Lots of Links
March 2014, <http://www.rfc-editor.org/info/rfc7153>. (TRILL): Fine-Grained Labeling", RFC 7172, DOI 10.17487/RFC7172,
May 2014, <http://www.rfc-editor.org/info/rfc7172>.
[RFC7172] Eastlake 3rd, D., Zhang, M., Agarwal, P., Perlman, R., and [6] [RFC7176] Eastlake, D., Senevirathne, T., Ghanwani, A., Dutt,
D. Dutt, "Transparent Interconnection of Lots of Links D., Banerjee, A.," Transparent Interconnection of Lots of Links
(TRILL): Fine-Grained Labeling", RFC 7172, (TRILL) Use of IS-IS'', May 2014.
DOI 10.17487/RFC7172, May 2014,
<http://www.rfc-editor.org/info/rfc7172>.
[RFC7176] Eastlake 3rd, D., Senevirathne, T., Ghanwani, A., Dutt, [7] [RFC7357] - Zhai, H., Hu, F., Perlman, R., Eastlake 3rd, D.,
D., and A. Banerjee, "Transparent Interconnection of Lots and O. Stokes, "Transparent Interconnection of Lots of Links
of Links (TRILL) Use of IS-IS", RFC 7176, (TRILL): End Station Address Distribution Information (ESADI)
DOI 10.17487/RFC7176, May 2014, Protocol", RFC 7357, September 2014, <http://www.rfc-
<http://www.rfc-editor.org/info/rfc7176>. editor.org/info/rfc7357>.
[RFC7357] Zhai, H., Hu, F., Perlman, R., Eastlake 3rd, D., and O. 7.2. Informative References
Stokes, "Transparent Interconnection of Lots of Links
(TRILL): End Station Address Distribution Information
(ESADI) Protocol", RFC 7357, DOI 10.17487/RFC7357,
September 2014, <http://www.rfc-editor.org/info/rfc7357>.
[RFC7606] Chen, E., Ed., Scudder, J., Ed., Mohapatra, P., and K. 8. Acknowledgments
Patel, "Revised Error Handling for BGP UPDATE Messages",
RFC 7606, DOI 10.17487/RFC7606, August 2015,
<http://www.rfc-editor.org/info/rfc7606>.
[RFC7752] Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and Authors like to thank Ross Callon, Andrew Qu, Jie Dong, Mingui Zhang,
S. Ray, "North-Bound Distribution of Link-State and Qin Wu, Shunwan Zhuang, Zitao Wang, Lili Wang for their valuable
Traffic Engineering (TE) Information Using BGP", RFC 7752, inputs.
DOI 10.17487/RFC7752, March 2016,
<http://www.rfc-editor.org/info/rfc7752>.
Authors' Addresses Authors' Addresses
Weiquo Hao
Weiguo Hao
Huawei Technologies Huawei Technologies
101 Software Avenue, 101 Software Avenue,
Nanjing 210012 Nanjing 210012
China China
Phone: +86-25-56623144 Phone: +86-25-56623144
Email: haoweiguo@huawei.com Email: haoweiguo@huawei.com
Donald E. Eastlake Donald E. Eastlake
Huawei Technologies Huawei Technologies
155 Beaver Street 155 Beaver Street
Milford , MA 01757 Milford, MA 01757 USA
USA
Phone: +1-508-333-2270 Phone: +1-508-333-2270
Email: d3e3e3@gmail.com Email: d3e3e3@gmail.com
Susan Hares Susan K. Hares
Huawei Technologies Hickory Hill Consulting
7453 Hickory 7453 Hickory Hill
Saline , MI 48176 Saline, MI 48176 USA
USA
Phone: +1-734-604-0332
Email: shares@ndzh.com Email: shares@ndzh.com
Sujay Gupta Sujay Gupta
IP Infusion IP Infusion
Email: sujay.gupta@ipinfusion.com Email: sujay.gupta@ipinfusion.com
Muhammad Durrani Muhammad Durrani
Cisco Systems Cisco
Phone: +1-408-527-6921 Phone: +1-408-527-6921
Email: mdurrani@cisco.com Email: mdurrani@cisco.com
Yizhou Li Yizhou Li
Huawei Technologies Huawei Technologies
101 Software Avenue, 101 Software Avenue,
Nanjing 210012 Nanjing 210012, China
China
Phone: +86-25-56625375
Email: liyizhou@huawei.com Email: liyizhou@huawei.com
 End of changes. 98 change blocks. 
315 lines changed or deleted 303 lines changed or added

This html diff was produced by rfcdiff 1.45. The latest version is available from http://tools.ietf.org/tools/rfcdiff/