draft-ietf-ccamp-rwa-wson-encode-28.txt   rfc7581.txt 
Network Working Group G. Bernstein
Internet Draft Grotto Networking
Intended status: Standards Track Y. Lee
Expires: August 2015 D. Li
Huawei
W. Imajuku
NTT
February 24, 2015
Routing and Wavelength Assignment Information Encoding for Internet Engineering Task Force (IETF) G. Bernstein, Ed.
Wavelength Switched Optical Networks Request for Comments: 7581 Grotto Networking
Category: Standards Track Y. Lee, Ed.
ISSN: 2070-1721 D. Li
Huawei
W. Imajuku
NTT
J. Han
Huawei
June 2015
draft-ietf-ccamp-rwa-wson-encode-28.txt Routing and Wavelength Assignment Information Encoding for
Wavelength Switched Optical Networks
Abstract Abstract
A wavelength switched optical network (WSON) requires that certain A Wavelength Switched Optical Network (WSON) requires certain key
key information fields are made available to facilitate path information fields be made available to facilitate path computation
computation and the establishment of label switching paths (LSPs). and the establishment of Label Switched Paths (LSPs). The
The information model described in "Routing and Wavelength information model described in "Routing and Wavelength Assignment
Assignment Information for Wavelength Switched Optical Networks" Information Model for Wavelength Switched Optical Networks" (RFC
shows what information is required at specific points in the WSON. 7446) shows what information is required at specific points in the
Part of the WSON information model contains aspects that may be of WSON. Part of the WSON information model contains aspects that may
general applicability to other technologies, while other parts are be of general applicability to other technologies, while other parts
specific to WSONs. are specific to WSONs.
This document provides efficient, protocol-agnostic encodings for This document provides efficient, protocol-agnostic encodings for the
the WSON-specific information fields. It is intended that protocol- WSON-specific information fields. It is intended that protocol-
specific documents will reference this memo to describe how specific documents will reference this memo to describe how
information is carried for specific uses. Such encodings can be used information is carried for specific uses. Such encodings can be used
to extend GMPLS signaling and routing protocols. In addition these to extend GMPLS signaling and routing protocols. In addition, these
encodings could be used by other mechanisms to convey this same encodings could be used by other mechanisms to convey this same
information to a path computation element (PCE). information to a Path Computation Element (PCE).
Status of this Memo
This Internet-Draft is submitted to IETF in full conformance with
the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six Status of This Memo
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at This is an Internet Standards Track document.
http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at This document is a product of the Internet Engineering Task Force
http://www.ietf.org/shadow.html (IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
This Internet-Draft will expire on August 24, 2015. Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7581.
Copyright Notice Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with carefully, as they describe your rights and restrictions with respect
respect to this document. Code Components extracted from this to this document. Code Components extracted from this document must
document must include Simplified BSD License text as described in include Simplified BSD License text as described in Section 4.e of
Section 4.e of the Trust Legal Provisions and are provided without the Trust Legal Provisions and are provided without warranty as
warranty as described in the Simplified BSD License. described in the Simplified BSD License.
Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [RFC2119].
Table of Contents Table of Contents
1. Introduction...................................................3 1. Introduction ....................................................4
1.1. Terminology..................................................4 1.1. Terminology ................................................4
2. Resources, Resource Blocks, and the Resource Pool..............4 1.2. Conventions Used in This Document ..........................5
2.1. Resource Block Set Field..................................5 2. Resources, Resource Blocks, and the Resource Pool ...............5
3. Resource Accessibility/Availability............................6 2.1. Resource Block Set Field ...................................6
3.1. Resource Accessibility Field..............................6 3. Resource Accessibility/Availability .............................7
3.2. Resource Wavelength Constraints Field.....................8 3.1. Resource Accessibility Field ...............................7
3.3. Resource Block Pool State (RBPoolState) Field.............9 3.2. Resource Wavelength Constraints Field ......................9
3.4. Resource Block Shared Access Wavelength Availability 3.3. Resource Block Pool State Field ...........................10
(RBSharedAccessWaveAvailability) Field........................11 3.4. Resource Block Shared Access Wavelength
4. Resource Block Information (ResourceBlockInfo) Field..........12 Availability Field ........................................12
4.1. Optical Interface Class List Subfield....................14 4. Resource Block Information Field ...............................13
4.1.1. ITU-G.698.1 Application Code Mapping.............16 4.1. Optical Interface Class List Subfield .....................15
4.1.2. ITU-G.698.2 Application Code Mapping.............18 4.1.1. ITU-T G.698.1 Application Code Mapping .............17
4.1.3. ITU-G.959.1 Application Code Mapping.............19 4.1.2. ITU-T G.698.2 Application Code Mapping .............18
ITU-G.695 Application Code Mapping.....................22 4.1.3. ITU-T G.959.1 Application Code Mapping .............20
4.1.4...................................................22 4.1.4. ITU-T G.695 Application Code Mapping ...............22
4.2. Acceptable Client Signal List Subfield................24 4.2. Acceptable Client Signal List Subfield ....................23
4.3. Input Bit Rate List Subfield..........................24 4.3. Input Bit Rate List Subfield ..............................24
4.4. Processing Capability List Subfield...................25 4.4. Processing Capability List Subfield .......................24
5. Security Considerations.......................................27 5. Security Considerations ........................................26
6. IANA Considerations...........................................27 6. IANA Considerations ............................................26
6.1. Types for subfields of WSON Resource Block Information...27 6.1. Types for Subfields of WSON Resource Block Information ....26
7. Acknowledgments...............................................28 7. References .....................................................27
APPENDIX A: Encoding Examples....................................29 7.1. Normative References ......................................27
A.1. Wavelength Converter Accessibility Field.................29 7.2. Informative References ....................................28
A.2. Wavelength Conversion Range Field........................31 Appendix A. Encoding Examples .....................................30
A.3. An OEO Switch with DWDM Optics...........................31 A.1. Wavelength Converter Accessibility Field ..................30
8. References....................................................35 A.2. Wavelength Conversion Range Field .........................32
8.1. Normative References.....................................35 A.3. An OEO Switch with DWDM Optics ............................32
8.2. Informative References...................................35 Contributors ......................................................35
9. Contributors..................................................37 Authors' Addresses ................................................37
Authors' Addresses...............................................38
1. Introduction 1. Introduction
A Wavelength Switched Optical Network (WSON) is a Wavelength A Wavelength Switched Optical Network (WSON) is a Wavelength Division
Division Multiplexing (WDM) optical network in which switching is Multiplexing (WDM) optical network in which switching is performed
performed selectively based on the center wavelength of an optical selectively based on the center wavelength of an optical signal.
signal.
[RFC6163] describes a framework for Generalized Multiprotocol Label [RFC6163] describes a framework for Generalized Multiprotocol Label
Switching (GMPLS) and Path Computation Element (PCE) control of a Switching (GMPLS) and Path Computation Element (PCE) control of a
WSON. Based on this framework, [RWA-Info] describes an information WSON. Based on this framework, [RFC7446] describes an information
model that specifies what information is needed at various points in model that specifies what information is needed at various points in
a WSON in order to compute paths and establish Label Switched Paths a WSON in order to compute paths and establish Label Switched Paths
(LSPs). (LSPs).
This document provides efficient encodings of information needed by This document provides efficient encodings of information needed by
the routing and wavelength assignment (RWA) process in a WSON. Such the Routing and Wavelength Assignment (RWA) process in a WSON. Such
encodings can be used to extend GMPLS signaling and routing encodings can be used to extend GMPLS signaling and routing
protocols. In addition these encodings could be used by other protocols. In addition, these encodings could be used by other
mechanisms to convey this same information to a path computation mechanisms to convey this same information to a PCE. Note that since
element (PCE). Note that since these encodings are efficient they these encodings are efficient, they can provide more accurate
can provide more accurate analysis of the control plane analysis of the control-plane communications/processing load for
communications/processing load for WSONs looking to utilize a GMPLS WSONs looking to utilize a GMPLS control plane.
control plane.
In parallel to this document, [Gen-Encode] provides efficient In parallel to this document, [RFC7579] provides efficient encodings
encodings of information needed by the routing and label assignment of information needed by the routing and label assignment process
process that are potentially applicable to a wider range of that are potentially applicable to a wider range of technologies.
technologies.
1.1. Terminology 1.1. Terminology
Refer to [RFC6163] for CWDM, DWDM, RWA, WDM. Refer to [RFC6163] for definitions of the following:
Refer to Section 5 of [RWA-Info] for the terminology of Resources, o Coarse Wavelength Division Multiplexing (CWDM)
Resource Blocks, and Resource Pool.
2. Resources, Resource Blocks, and the Resource Pool o Dense Wavelength Division Multiplexing (DWDM)
This section provides encodings for the information fields defined o Routing and Wavelength Assignment (RWA)
in [RWA-Info] that have applicability to WSON. The encodings are
o Wavelength Division Multiplexing (WDM)
Refer to Section 5 of [RFC7446] for definitions of the following:
o resource
o resource block
o resource pool
The Optical Interface (OI) Code Point is a unique number that
identifies all information related to optical characteristics of a
physical interface.
1.2. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
2. Resources, Resource Blocks, and the Resource Pool
This section provides encodings for the information fields defined in
[RFC7446] that have applicability to WSON. The encodings are
designed to be suitable for use in the GMPLS routing protocols OSPF designed to be suitable for use in the GMPLS routing protocols OSPF
[RFC4203] and IS-IS [RFC5307] and in the PCE protocol (PCEP) [RFC4203] and IS-IS [RFC5307] and in the PCE Communication Protocol
[RFC5440]. Note that the information distributed in [RFC4203] and (PCEP) [RFC5440]. Note that the information distributed in [RFC4203]
[RFC5307] is arranged via the nesting of sub-TLVs within TLVs and and [RFC5307] is arranged via the nesting of sub-TLVs within TLVs;
this document defines elements to be used within such constructs. this document defines elements to be used within such constructs.
Specific constructs of sub-TLVs and the nesting of sub-TLVs of the Specific constructs of sub-TLVs and the nesting of sub-TLVs of the
information field defined by this document will be defined in the information fields defined by this document will be defined in the
respective protocol enhancement documents. respective protocol enhancement documents.
This document defines the following information fields pertaining to This document defines the following information fields pertaining to
resources within an optical node: resources within an optical node:
. Resource Accessibility <ResourceAccessibility> o Resource Accessibility <ResourceAccessibility>
. Resource Wavelength Constraints <ResourceWaveConstraints> o Resource Wavelength Constraints <ResourceWaveConstraints>
. Resource Block Pool State <RBPoolState> o Resource Block Pool State <RBPoolState>
. Resource Block Shared Access Wavelength Availability
<RBSharedAccessWaveAvailability>
. Resource Block Information <ResourceBlockInfo> o Resource Block Shared Access Wavelength Availability
<RBSharedAccessWaveAvailability>
o Resource Block Information <ResourceBlockInfo>
Each of these information fields works with one or more sets of Each of these information fields works with one or more sets of
resources rather than just a single resource block. This motivates resources rather than just a single resource block. This motivates
the following field definition. the field definition in Section 2.1.
2.1. Resource Block Set Field 2.1. Resource Block Set Field
In a WSON node that includes resource blocks (RB), denoting subsets In a WSON node that includes resource blocks (RBs), denoting subsets
of these blocks allows one to efficiently describe common properties of these blocks allows one to efficiently describe common properties
of the blocks and to describe the structure and characteristics, if of the blocks and to describe the structure and characteristics, if
non-trivial, of the resource pool. The RB Set field is defined in a nontrivial, of the resource pool. The Resource Block Set (RB Set)
similar manner to the label set concept of [RFC3471]. Field is defined in a similar manner to the label set concept of
[RFC3471].
The information carried in an RB set field is defined by: The information carried in an RB Set Field is defined as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action |C| Reserved | Length | | Action |C| Reserved | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Identifier 1 | | RB Identifier 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Identifier n | | RB Identifier n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Action: 8 bits Action: 8 bits
0 - Inclusive List 0 - Inclusive List
Indicates that the TLV contains one or more RB elements that are Indicates that the TLV contains one or more RB elements that
included in the list. are included in the list.
1 - Inclusive Range(s) 1 - Inclusive Range(s)
Indicates that the TLV contains one or more ranges of RBs. Each Indicates that the TLV contains one or more ranges of RBs.
individual range is denoted by two 32-bit RB identifier. The first Each individual range is denoted by two 32-bit RB identifiers.
32 bits is the RB identifier for the start of the range and the next The first 32 bits is the RB identifier for the start of the
32 bits is the RB identifier for the end of the range. Note that the range, and the next 32 bits is the RB identifier for the end
Length field is used to determine the number of ranges. of the range. Note that the Length field is used to determine
the number of ranges.
C (Connectivity bit): Set to 0 to denote fixed (possibly multi- C (Connectivity bit)
cast) connectivity; Set to 1 to denote potential (switched)
connectivity. Used in Resource Accessibility field. Ignored
elsewhere.
Reserved: 7 bits Set to 0 to denote fixed (possibly multicast) connectivity, and
set to 1 to denote potential (switched) connectivity. Used in
Resource Accessibility field. Ignored elsewhere.
This field is reserved. It MUST be set to zero on transmission and Reserved: 7 bits
MUST be ignored on receipt.
Length: 16 bits This field is reserved. It MUST be set to zero on transmission
and MUST be ignored on receipt.
The total length of this field in bytes. Length: 16 bits
RB Identifier: The total length of this field in bytes.
The RB identifier represents the ID of the resource block which is a RB Identifier:
32 bit integer. The scope of the RB identifier is local to the node
on which it is applied.
Usage Note: the inclusive range "Action" can result in very compact The RB identifier represents the ID of the resource block, which
encoding of resource sets and it can be advantageous to number is a 32-bit integer. The scope of the RB identifier is local to
the node on which it is applied.
Usage Note: The inclusive range "Action" can result in very compact
encoding of resource sets, and it can be advantageous to number
resource blocks in such a way so that status updates (dynamic resource blocks in such a way so that status updates (dynamic
information) can take advantage of this efficiency. information) can take advantage of this efficiency.
3. Resource Accessibility/Availability 3. Resource Accessibility/Availability
This section defines the information fields for dealing with This section defines the information fields for dealing with
accessibility and availability of resource blocks within a pool of accessibility and availability of resource blocks within a pool of
resources. These include the ResourceAccessibility, resources. These include the <ResourceAccessibility>,
ResourceWaveConstraints, and RBPoolState fields. <ResourceWaveConstraints>, <RBPoolState>, and
<RBSharedAccessWaveAvailability> fields.
3.1. Resource Accessibility Field 3.1. Resource Accessibility Field
This information field describes the structure of the resource pool This information field describes the structure of the resource pool
in relation to the switching device. In particular it indicates the in relation to the switching device. In particular, it indicates the
ability of an input port to reach sets of resources and of sets of ability of an input port to reach sets of resources and the ability
resources to reach a particular output port. This is the of sets of resources to reach a particular output port. This is the
PoolInputMatrix and PoolOutputMatrix of [RWA-Info]. <PoolInputMatrix> and <PoolOutputMatrix> of [RFC7446].
The Resource Accessibility field is defined by: The Resource Accessibility field is defined as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Reserved(8bits)|C| Reserved (23 bits) | |Reserved(8bits)|C| Reserved (23 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Link Set Field A #1 | | Input Link Set Field A #1 |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field A #1 | | RB Set Field A #1 |
skipping to change at page 7, line 29 skipping to change at page 8, line 31
| Output Link Set Field B #1 | | Output Link Set Field B #1 |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set B Field #1 (for output connectivity) | | RB Set B Field #1 (for output connectivity) |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Link Set and RB set pairs as needed to | | Additional Link Set and RB set pairs as needed to |
: specify PoolOutputMatrix : : specify PoolOutputMatrix :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Where:
C (Connectivity bit): Connectivity indicates how the input/output C (Connectivity bit): Connectivity indicates how the input/output
ports connect to the resource blocks. ports connect to the resource blocks.
0 -- the device is fixed (e.g., a connected port must go 0 - the device is fixed (e.g., a connected port must go through
through the resource block) the resource block)
1 -- the device is switched (e.g., a port can be configured to 1 - the device is switched (e.g., a port can be configured to go
go through a resource but isn't required) through a resource but isn't required)
For the Input and Output Link Set Fields, the Link Set Field For the Input and Output Link Set Fields, the Link Set Field encoding
encoding defined in [Gen-Encode] is to be used. A Label Set Field defined in [RFC7579] is to be used.
MUST carry a label as defined in [RFC6205].
Note that the direction parameter within the Link Set Field is used Note that the direction parameter within the Link Set Field is used
to indicate whether the link set is an input or output link set, and to indicate whether the link set is an input or output link set, and
the bidirectional value for this parameter is not permitted in this the bidirectional value for this parameter is not permitted in this
field. field.
See Appendix A.1 for an illustration of this encoding. See Appendix A.1 for an illustration of this encoding.
3.2. Resource Wavelength Constraints Field 3.2. Resource Wavelength Constraints Field
Resources, such as wavelength converters, etc., may have limited Resources, such as wavelength converters, etc., may have limited
input or output wavelength ranges. Additionally, due to the input or output wavelength ranges. Additionally, due to the
structure of the optical system not all wavelengths can necessarily structure of the optical system, not all wavelengths can necessarily
reach or leave all the resources. These properties are described by reach or leave all the resources. These properties are described by
using one or more resource wavelength restrictions fields as defined using one or more Resource Wavelength Constraints fields as defined
below: below:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|I|O|B| Reserved | |I|O|B| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field | | RB Set Field |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Wavelength Constraints | | Input Wavelength Constraints |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Wavelength Constraints | | Output Wavelength Constraints |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I = 1 indicates the presence of the Input Wavelength Constraints I (Input):
Field and I = 0 indicates otherwise.
O = 1 indicates the presence of the Output Wavelength Constraints 1 - indicates the presence of the Input Wavelength Constraints
Field and O = 0 indicates otherwise. field
B = 1 indicates that a single wavelength constraints field 0 - indicates otherwise.
represents both Input and Output Wavelength Constraints Fields.
Currently the only valid combinations of (I,O,B) are (1,0,0), O (Output):
(0,1,0), (1,1,0), (0,0,1).
RB Set Field: 1 - indicates the presence of the Output Wavelength Constraints
field
A set of resource blocks (RBs) which have the same wavelength 0 - indicates otherwise.
restrictions.
Input Wavelength Constraints Field: B (Both):
Indicates the wavelength input restrictions of the RBs in the 1 - indicates that a single Wavelength Constraints field
corresponding RB set. This field is encoded via the Label Set field represents both Input and Output Wavelength Constraints
of [Gen-Encode]. fields.
Output Wavelength Constraints Field: Currently, the only valid combinations of (I,O,B) are (1,0,0),
(0,1,0), (1,1,0), and (0,0,1).
Indicates the wavelength output restrictions of RBs in the RB Set Field:
corresponding RB set. This field is encoded via the Label Set field
of [Gen-Encode].
3.3. Resource Block Pool State (RBPoolState) Field A set of resource blocks (RBs) that have the same wavelength
restrictions.
Input Wavelength Constraints:
Indicates the wavelength input restrictions of the RBs in the
corresponding RB set. This field is encoded via the Label Set
Field of [RFC7579].
Output Wavelength Constraints:
Indicates the wavelength output restrictions of RBs in the
corresponding RB set. This field is encoded via the Label Set
Field of [RFC7579].
3.3. Resource Block Pool State Field
The state of the pool is given by the number of resources available The state of the pool is given by the number of resources available
with particular characteristics. A resource block set is used to with particular characteristics. A resource block set is used to
encode all or a subset of the resources of interest. The usage state encode all or a subset of the resources of interest. The usage state
of resources within a resource block set is encoded as either a list of resources within a resource block set is encoded as either a list
of 16 bit integer values or a bit map indicating whether a single of 16-bit integer values or a bitmap indicating whether a single
resource is available or in use. The bit map encoding is appropriate resource is available or in use. The bitmap encoding is appropriate
when resource blocks consist of a single resource. This information when resource blocks consist of a single resource. This information
can be relatively dynamic, i.e., can change when a connection (LSP can be relatively dynamic, i.e., can change when a connection (LSP)
is established or torn down. is established or torn down.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action | Reserved | | Action | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field | | RB Set Field |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Usage state | | RB Usage State |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Action = 0 denotes a list of 16 bit integers and Action = 1 Where:
denotes a bit map. Action = 0 covers the case where there are
multiple elements for each resource block. Action = 1 covers the
case where each resource block only contains a single element.
In both cases the elements of the RB Set field are in a one-to-one Action = 0 denotes a list of 16-bit integers, and Action = 1 denotes
correspondence with the values in the usage RB usage state area. a bitmap. Action = 0 covers the case where there are multiple
elements for each resource block. Action = 1 covers the case where
each resource block only contains a single element.
In both cases, the elements of the RB Set Field are in a one-to-one
correspondence with the values in the RB Usage State area.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action = 0 | Reserved | | Action = 0 | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field | | RB Set Field |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB#1 state | RB#2 state | | RB#1 State | RB#2 State |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB#n-1 state | RB#n state or Padding | | RB#n-1 State | RB#n State or Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
RB#i State (16 bits, unsigned integer): indicates the number of RB#i State (16 bits, unsigned integer): Indicates the number of
resources available in Resource Block #i. resources available in Resource Block #i.
Whether the last 16 bits is a wavelength converter (RB) state or Whether the last 16 bits is a wavelength converter (RB) state or
padding is determined by the number of elements in the RB set field. padding is determined by the number of elements in the RB Set Field.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action = 1 | Reserved | | Action = 1 | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field | | RB Set Field |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Usage state bitmap | | RB Usage State Bitmap |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...... | Padding bits | | ...... | Padding Bits |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
RB Usage state: Variable Length but must be a multiple of 4 byes. RB Usage State Bitmap: Variable length but must be a multiple of 4
bytes.
Each bit indicates the usage status of one RB with 0 indicating the Each bit indicates the usage status of one RB with 0 indicating the
RB is available and 1 indicating the RB is in use. The sequence of RB is available and 1 indicating the RB is in use. The sequence of
the bit map is ordered according to the RB Set field with this the bitmap is ordered according to the RB Set Field with this
element. element.
Padding bits: Variable Length Padding bits: Variable length
3.4. Resource Block Shared Access Wavelength Availability 3.4. Resource Block Shared Access Wavelength Availability Field
(RBSharedAccessWaveAvailability) Field
Resource blocks may be accessed via a shared fiber. If this is the Resource blocks may be accessed via a shared fiber. If this is the
case, then wavelength availability on these shared fibers is needed case, then wavelength availability on these shared fibers is needed
to understand resource availability. to understand resource availability.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|I|O|B| Reserved | |I|O|B| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field | | RB Set Field |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Available Wavelength Set Field | | Input Available Wavelength Set Field |
: (Optional) : : (Optional) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Available Wavelength Set Field | | Output Available Wavelength Set Field |
: (Optional) : : (Optional) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I = 1 or 0 indicates the presence or absence of the Input Available I (Input):
Wavelength Set Field
O = 1 or 0 indicates the presence or absence of the Output Available 1 - indicates the presence of the Input Available Wavelength Set
Wavelength Set Field. Field.
B = 1 indicates that a single Available Wavelength Set Field 0 - indicates the absence of the Input Available Wavelength Set
represents both Input and Output Available Wavelength Set Fields. Field.
Currently the only valid combinations of (I,O,B) are (1,0,0), O (Output):
(0,1,0), (1,1,0), (0,0,1).
RB Set Field: 1 - indicates the presence of the Output Available Wavelength Set
Field.
A Resource Block set in which all the members share the same input 0 - indicates the absence of the Output Available Wavelength Set
or output fiber or both. Field.
Input Available Wavelength Set Field: B (Both):
Indicates the wavelengths currently available (not being used) on 1 - indicates that a single Available Wavelength Set Field
the input fiber to this resource block. This field is encoded via represents both Input and Output Available Wavelength Set
the Label Set field of [Gen-Encode]. Fields.
Output Available Wavelength Set Field: Currently, the only valid combinations of (I,O,B) are (1,0,0),
(0,1,0), (1,1,0), and (0,0,1).
Indicates the wavelengths currently available (not being used) on RB Set Field:
the output fiber from this resource block. This field is encoded via
the Label Set field of [Gen-Encode].
4. Resource Block Information (ResourceBlockInfo) Field A resource block set in which all the members share the same input
or output fiber or both.
As defined in [RWA-Info], the Resource Block Information Input Available Wavelength Set Field:
Indicates the wavelengths currently available (not being used) on
the input fiber to this resource block. This field is encoded via
the Label Set Field of [RFC7579].
Output Available Wavelength Set Field:
Indicates the wavelengths currently available (not being used) on
the output fiber from this resource block. This field is encoded
via the Label Set Field of [RFC7579].
4. Resource Block Information Field
As defined in [RFC7446], the Resource Block Information
<ResourceBlockInfo> field is used to represent resource signal <ResourceBlockInfo> field is used to represent resource signal
constraints and processing capabilities of a node. constraints and processing capabilities of a node.
The fundamental properties of a resource block are: The fundamental properties of a resource block are:
(a) Optical Interface Class List(s) o Optical Interface Class List(s)
(b) Acceptable Client Signal (shared input, modulation, FEC, bit
rate, G-PID)
(c) Input Bit Rate
(d) Processing Capabilities (number of resources in a block,
regeneration, performance monitoring, vendor specific)
ResourceBlockInfo fields are used to convey relatively static o Acceptable Client Signal (shared input, modulation, Forward Error
information about individual resource blocks including the resource Correction (FEC), bit rate, and Generalized Protocol Identifier
(G-PID))
o Input Bit Rate
o Processing Capabilities (number of resources in a block,
regeneration, performance monitoring, vendor specific)
<ResourceBlockInfo> fields are used to convey relatively static
information about individual resource blocks, including the resource
block properties and the number of resources in a block. block properties and the number of resources in a block.
When more than one ResourceBlockInfo field is used, there are no When more than one <ResourceBlockInfo> field is used, there are no
ordering requirements amongst these fields. The length of the ordering requirements amongst these fields. The length of the
ResourceBlockInfo field is determined from the length of the object <ResourceBlockInfo> field is determined from the length of the object
that includes it. that includes it.
This ResourceBlockInfo field has the following format: The <ResourceBlockInfo> field has the following format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field | | RB Set Field |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|I|O|B| Reserved | |I|O|B| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optional subfield 1 | | Optional Subfield 1 |
: ... : : ... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : : : :
: : : : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optional subfield N | | Optional Subfield N |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
RB Set Field is described in Section 2.1. The RB Set Field is described in Section 2.1.
The shared input or output indication is indicated by the first bit The shared input or output indication is indicated by the first bit
(I), the second bit (O) and the third bit (B): (I), the second bit (O), and the third bit (B).
I = 1 indicates if the resource blocks identified in the RB set I (Input):
field utilized a shared fiber for input access and and I = 0
indicates otherwise.
O = 1 indicates if the resource blocks identified in the RB set 1 - indicates if the resource blocks identified in the RB Set
field utilized a shared fiber for output access and O = 0 indicates Field utilized a shared fiber for input access.
otherwise.
B = 1 indicates if the resource blocks identified in the RB set 0 - indicates otherwise.
field utilized a shared fiber for both input and output access and B
= 0 indicates otherwise.
Currently the only valid combinations of (I,O,B) are (1,0,0), O (Output):
(0,1,0), (1,1,0), (0,0,1).
Zero or more Optional subfields MAY be present. Optional subfields 1 - indicates if the resource blocks identified in the RB Set
Field utilized a shared fiber for output access.
0 - indicates otherwise.
B (Both):
1 - indicates if the resource blocks identified in the RB Set
Field utilized a shared fiber for both input and output
access.
0 - indicates otherwise.
Currently, the only valid combinations of (I,O,B) are (1,0,0),
(0,1,0), (1,1,0), and (0,0,1).
Zero or more Optional Subfields MAY be present. Optional Subfields
have the following format: have the following format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value... | | Value... |
. . . .
. . . .
. . . .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Length field defines the length of the value portion in bytes The Length field defines the length of the value portion in bytes
(thus a subfield with no value portion would have a length of zero). (thus, a subfield with no value portion would have a length of zero).
The subfield is padded to four-byte alignment; padding is not The subfield is padded to 4-byte alignment; padding is not included
included in the Length field (so a three byte value would have a in the Length field (so a 3-byte value would have a length of three,
length of three, but the total size of the subfield would be eight but the total size of the subfield would be 8 bytes). Unrecognized
byte). Unrecognized types are not processed. If multiple subfields types are not processed. If multiple subfields of the same type are
of the same type are present, only the first of the type SHOULD be present, only the first of the type SHOULD be processed.
processed.
The following subfield Types are defined: The following sub-TLV types are defined:
Value Length Sub-TLV Type Value Length Sub-TLV Type
1 variable Optical Interface Class List 1 variable Optical Interface Class List
2 variable Acceptable Client Signal List 2 variable Acceptable Client Signal List
3 variable Input Bit Rate List 3 variable Input Bit Rate List
4 variable Processing Capability List 4 variable Processing Capability List
See the IANA Considerations section for allocation of new Types. See the IANA Considerations section for allocation of new types.
4.1. Optical Interface Class List Subfield 4.1. Optical Interface Class List Subfield
The Optical Interface Class subfield has the following format: The Optical Interface Class List subfield has the following format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |I|O| | Reserved |I|O|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optical Interface Classes | | Optical Interface Classes |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The following I and O combination are defined: The following I and O combination are defined:
I O I O
-----
0 0 Invalid 0 0 Invalid
1 0 Optical Interface Class List acceptable in input 1 0 Optical Interface Class List acceptable in input
0 1 Optical Interface Class List available in output 0 1 Optical Interface Class List available in output
1 1 Optical Interface Class List available on both input and 1 1 Optical Interface Class List available on both input and
output. output.
The Resource Block MAY contain one or more lists according to the The resource block MAY contain one or more lists according to the
input/output flags. input/output flags.
The Optical Interface Classes format is defined as follows: The Optical Interface Classes format is defined as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Reserved | OI Code Points | |S| Reserved | OI Code Points |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optical Interface Class | | Optical Interface Class |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optical Interface Class (Cont.) | | Optical Interface Class (Cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where the first 32 bits of the encoding shall be used to identify Where the first 32 bits of the encoding shall be used to identify the
the semantics of the Optical Interface Class in the following way: semantics of the Optical Interface Class in the following way:
S Standard bit. S (Standard bit):
S=0, identify non-ITU code points S=0: identifies non-ITU code points
S=1, identify ITU application codes S=1: identifies ITU application codes
With S=0, the OI Code Points field can take the following With S=0, the OI Code Points field can take the following value:
value:
0: reserved 0: reserved
Future work may add support for vendor-specific AI once the Future work may add support for vendor-specific application codes
ITU-T has completed its work in that area. once the ITU-T has completed its work in that area.
With S=1, the OI Code Points field can take the following With S=1, the OI Code Points field can take the following values:
values:
0: reserved 0: reserved
1: [G.698.1] application code. 1: [G.698.1] application code
2: [G.698.2] application code. 2: [G.698.2] application code
3: [G.959.1] application code. 3: [G.959.1] application code
4: [G.695] application code. 4: [G.695] application code
In the case of ITU Application Codes, the mapping between the string In the case of ITU application codes, the mapping between the string
defining the application code and the 64 bits implementing the defining the application code and the 64 bits implementing the
optical interface class is given in the following sections. optical interface class is given in the following sections.
4.1.1. ITU-G.698.1 Application Code Mapping 4.1.1. ITU-T G.698.1 Application Code Mapping
[698.1] defines the Application Codes: DScW-ytz(v) and B-DScW- [G.698.1] defines the following application codes: DScW-ytz(v) and
ytz(v). Where: B-DScW-ytz(v). Where:
B: means Bidirectional. B: means Bidirectional
D: means a DWDM application. D: means a DWDM application
S: takes values N (narrow spectral excursion), W (wide spectral S: takes values N (narrow spectral excursion) or W (wide spectral
excursion). excursion)
c: Channel Spacing (GHz). c: Channel Spacing (GHz)
W: takes values S (short-haul), L (long-haul). W: takes values S (short-haul) or L (long-haul)
y: takes values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). y: takes values 1 (NRZ 2.5G) or 2 (NRZ 10G)
t: only D value is defined (link does not contain optical t: only D value is defined (link does not contain optical
amplifier) amplifier)
z: takes values 2 ([G.652] fibre), 3 ([G.653] fibre), 5 z: takes values 2 ([G.652] fibre), 3 ([G.653] fibre), or 5
(indicating [G.655] fibre). ([G.655] fibre)
v: takes values S (Short wavelength), C (Conventional), L (Long v: takes values S (Short wavelength), C (Conventional), or L (Long
wavelength). wavelength)
The F flag indicates the presence or absence of an optional FEC The F flag indicates the presence or absence of an optional FEC
Encoding suffix. encoding suffix.
These get mapped into the 64 bit OIC field as follows: These get mapped into the 64-bit Optical Interface Class field as
follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|B| D |S| c | W | y | t | z | v | F | |B| D |S| c | W | y | t | z | v | F |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| reserved | | reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where values between parentheses refer to ITU defined values as Where (values between parentheses refer to ITU-defined values as
reported above: reported above):
B: = 1 bidirectional, 0 otherwise B: 1 bidirectional, 0 otherwise
D (prefix): = 0 reserved, = 1 (D) D (prefix): 0 reserved, 1 (D)
S: = 0 (N), = 1 (W) S: 0 (N), 1 (W)
c: Channel Spacing, 4 bits mapped according to the same c: Channel Spacing, 4 bits mapped according to the same definition
definition as in Figure 2 in Section 3.2 of [RFC6205] (note that as in the third figure in Section 3.2 of [RFC6205] (note that
DWDM spacing applies here) DWDM spacing applies here).
W: = 0 reserved, = 2 (S), = 3 (L) W: 0 reserved, 2 (S), 3 (L)
y: = 0 reserved, = 1 (1), = 2 (2)
t: = 0 reserved, = 4 (D) y: 0 reserved, 1 (1), 2 (2)
z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) t: 0 reserved, 4 (D)
v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) z: 0 reserved, 2 (2), 3 (3), 5 (5)
F (suffix): = 0 No FEC Encoding suffix present, = 1 FEC v: 0 reserved, 1 (S), 2 (C), 3 (L)
Encoding suffix present
Values not mentioned here are not allowed in this application F (suffix): 0 No FEC encoding suffix present, 1 FEC encoding
code; the last 32 bits are reserved and shall be set to zero. suffix present
4.1.2. ITU-G.698.2 Application Code Mapping Values not mentioned here are not allowed in this application code;
the last 32 bits are reserved and shall be set to zero.
[G.698.2] defines the Application Codes: DScW-ytz(v) and B-DScW- 4.1.2. ITU-T G.698.2 Application Code Mapping
ytz(v).
B: means Bidirectional. [G.698.2] defines the following application codes: DScW-ytz(v) and
B-DScW-ytz(v). Where:
D: means a DWDM application. B: means Bidirectional
S: takes values N (narrow spectral excursion), W (wide spectral D: means a DWDM application
excursion). S: takes values N (narrow spectral excursion) or W (wide spectral
excursion)
c: Channel Spacing (GHz). c: Channel Spacing (GHz)
W: takes values C (link is dispersion compensated), U (link is W: takes values C (link is dispersion compensated) or U (link is
dispersion uncompensated). dispersion uncompensated)
y: takes values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). y: takes values 1 (NRZ 2.5G) or 2 (NRZ 10G)
t: takes value A (link may contains optical amplifier) t: takes value A (link may contains optical amplifier)
z: takes values 2 ([G.652] fibre), 3 ([G.653] fibre), 5 z: takes values 2 ([G.652] fibre), 3 ([G.653] fibre), or 5
(indicating [G.655] fibre). ([G.655] fibre)
v: takes values S (Short wavelength), C (Conventional), L (Long v: takes values S (Short wavelength), C (Conventional), or L (Long
wavelength). wavelength)
An Optional F can be added indicating a FEC Encoding. An optional F can be added to indicate a FEC encoding.
These get mapped into the 64-bit OIC field as follows: These get mapped into the 64-bit Optical Interface Class field as
follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|B| D |S| c | W | y | t | z | v | F | |B| D |S| c | W | y | t | z | v | F |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| reserved | | reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where (values between parentheses refer to ITU defined values as Where (values between parentheses refer to ITU-defined values as
reported above): reported above):
B: = 1 bidirectional, 0 otherwise B: 1 bidirectional, 0 otherwise
D (prefix): = 0 reserved, = 1 (D) D (prefix): 0 reserved, 1 (D)
S: = 0 (N), = 1 (W) S: 0 (N), 1 (W)
c: Channel Spacing, 4 bits mapped according to the same c: Channel Spacing, 4 bits mapped according to the same definition
definition as in Figure 2 in Section 3.2 of [RFC6205] (note that as in the third figure in Section 3.2 of [RFC6205] (note that
DWDM spacing applies here) DWDM spacing applies here).
W: = 0 reserved, = 10 (C), = 11 (U) W: 0 reserved, 10 (C), 11 (U)
y: = 0 reserved, = 1 (1), = 2 (2) y: 0 reserved, 1 (1), 2 (2)
t: 0 reserved, 1 (A)
t: = 0 reserved, = 1 (A) z: 0 reserved, 2 (2), 3 (3), 5 (5)
z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) v: 0 reserved, 1 (S), 2 (C), 3 (L)
v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) F (suffix): 0 reserved, 1 FEC encoding
F (suffix): = 0 reserved, = 1 FEC Encoding Values not mentioned here are not allowed in this application code.
The last 32 bits are reserved and shall be set to zero.
Values not mentioned here are not allowed in this application 4.1.3. ITU-T G.959.1 Application Code Mapping
code, the last 32 bits are reserved and shall be set to zero.
4.1.3. ITU-G.959.1 Application Code Mapping [G.959.1] defines the following application codes: PnWx-ytz and
BnWx-ytz. Where:
[G.959.1] defines the Application Codes: PnWx-ytz and BnWx-ytz. P,B: when present, indicate Plural or Bidirectional
Where:
P,B: when present indicate Plural or Bidirectional
n: maximum number of channels supported by the application code n: maximum number of channels supported by the application code
(i.e., an integer number) (i.e., an integer number)
W: takes values I (intra-office), S (short-haul), L (long-haul), W: takes values I (intra-office), S (short-haul), L (long-haul), V
V (very long-haul), U (ultra long-haul). (very long-haul), or U (ultra long-haul)
x: maximum number of spans allowed within the application code x: maximum number of spans allowed within the application code
(i.e., an integer number) (i.e., an integer number)
y: takes values 1 (NRZ 2.5G), 2 (NRZ 10G), 9 (NRZ 25G), 3 (NRZ y: takes values 1 (NRZ 2.5G), 2 (NRZ 10G), 9 (NRZ 25G), 3 (NRZ
40G), 7 (RZ 40G). 40G), or 7 (RZ 40G)
t: takes values A (power levels suitable for a booster amplifier t: takes values A (power levels suitable for a booster amplifier
in the originating ONE and power levels suitable for a pre-amplifier in the originating ONE and power levels suitable for a pre-
in the terminating ONE), B (booster amplifier only), C (pre- amplifier in the terminating ONE), B (booster amplifier only),
amplifier only), D (no amplifiers). C (pre-amplifier only), or D (no amplifiers)
z: takes values 1 (1310 nm sources on [G.652] fibre), 2 (1550 z: takes values 1 (1310 nm sources on [G.652] fibre), 2 (1550 nm
nm sources on [G.652] fibre), 3 (1550 nm sources on [G.653] fibre), sources on [G.652] fibre), 3 (1550 nm sources on [G.653]
5 (1550 nm sources on [G.655] fibre). fibre), or 5 (1550 nm sources on [G.655] fibre).
The following list of suffixes can be added to these application The following list of suffixes can be added to these application
codes: codes:
F: FEC encoding. F: FEC encoding
D: Adaptive dispersion compensation.
E: receiver capable of dispersion compensation. D: Adaptive dispersion compensation
r: reduced target distance. E: receiver capable of dispersion compensation
r: reduced target distance
a: power levels appropriate to APD receivers. a: power levels appropriate to APD receivers
b: power levels appropriate to PIN receivers. b: power levels appropriate to PIN receivers
These values are encoded as follows: These values are encoded as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| p | P | n | W | x | reserved | | p | P | n | W | x | reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| y | t | z | suffix | reserved | | y | t | z | suffix | reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where (values between parentheses refer to ITU defined values as Where (values between parentheses refer to ITU-defined values as
reported above): reported above):
p (prefix) = 0 otherwise, = 1 Bidirectional (B) p (prefix): 0 otherwise, 1 Bidirectional (B)
P (optional): = 0 not present, = 2 (P). P (optional): 0 not present, 2 (P).
n: maximum number of channels (10 bits, up to 1023 channels) n: maximum number of channels (10 bits, up to 1023 channels)
W: = 0 reserved, = 1 (I), = 2 (S), = 3 (L), = 4 (V), = 5 (U) W: 0 reserved, 1 (I), 2 (S), 3 (L), 4 (V), 5 (U)
x: = number of spans (6 bits, up to 64 spans) x: number of spans (6 bits, up to 64 spans)
y: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 7 (7), = 9 (9) y: 0 reserved, 1 (1), 2 (2), 3 (3), 7 (7), 9 (9)
t: = 0 reserved, = 1 (A), = 2 (B), = 3 (C), = 4 (D) t: 0 reserved, 1 (A), 2 (B), 3 (C), 4 (D)
z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 5 (5) z: 0 reserved, 1 (1), 2 (2), 3 (3), 5 (5)
suffix is a 6-bit bitmap: suffix: a 6-bit bitmap, where a "1" in the appropriate slot
indicates that the corresponding suffix has been added.
0 1 2 3 4 5 0 1 2 3 4 5
+-+-+-+-+-+-+ +-+-+-+-+-+-+
|F|D|E|r|a|b| |F|D|E|r|a|b|
+-+-+-+-+-+-+ +-+-+-+-+-+-+
where a 1 in the appropriate slot indicates that the corresponding
suffix has been added.
4.1.4. ITU-G.695 Application Code Mapping 4.1.4. ITU-T G.695 Application Code Mapping
[G.695] defines the Application Codes: CnWx-ytz and B-CnWx-ytz and [G.695] defines the following application codes: CnWx-ytz,
S-CnWx-ytz. B-CnWx-ytz, and S-CnWx-ytz.
Where the optional prefixes are: Where the optional prefixes are:
B: Bidirectional B: Bidirectional
S: a system using a black link approach S: a system using a black link approach
And the rest of the application code is defined as: And the rest of the application code is defined as:
C: CWDM (Coarse WDM) application C: CWDM (Coarse WDM) application
n: maximum number of channels supported by the application code n: maximum number of channels supported by the application code
(i.e., an integer number) (i.e., an integer number)
W: takes values S (short-haul), L (long-haul). W: takes values S (short-haul) or L (long-haul)
x: maximum number of spans allowed x: maximum number of spans allowed
y: takes values 0 (NRZ 1.25G), 1 (NRZ 2.5G), 2 (NRZ 10G). y: takes values 0 (NRZ 1.25G), 1 (NRZ 2.5G), or 2 (NRZ 10G).
t: takes value D (link does not contain any optical amplifier). t: takes value D (link does not contain any optical amplifier).
z: takes values 1 (1310 nm region for [G.652] fibre), 2 (ITU-T z: takes values 1 (1310 nm region for [G.652] fibre), 2 (ITU-T
[G.652] fibre), 3 ([G.653] fibre), 5 ([G.655] fibre). [G.652] fibre), 3 ([G.653] fibre), or 5 ([G.655] fibre)
The following list of suffixes can be added to these application The following list of suffixes can be added to these application
codes: codes:
F: FEC encoding. F: FEC encoding
Since the application codes are very similar to the ones from the Since the application codes are very similar to the ones from the
[G.959] section most of the fields are reused. The 64-bit OIC field [G.959.1] section, most of the fields are reused. The 64-bit Optical
is encoded as follows: Interface Class field is encoded as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| p | C | n | W | x | reserved | | p | C | n | W | x | reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| y | t | z | suffix | reserved | | y | t | z | suffix | reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where (values between parentheses refer to ITU defined values as Where (values between parentheses refer to ITU-defined values as
reported above): reported above):
p: = 0 no prefix, = 1 B bidirectional, = 2 S black link p: 0 no prefix, 1 (B) bidirectional, 2 (S) black link
C: = 0 reserved, = 3 (C). C: 0 reserved, 3 (C)
n: maximum number of channels (10 bits, up to 1023 channels) n: maximum number of channels (10 bits, up to 1023 channels)
W: = 0 reserved, = 1 reserved, = 2 (S), = 3 (L), > 3 reserved W: 0 reserved, 1 reserved, 2 (S), 3 (L), > 3 reserved
x: = number of spans (6 bits, up to 64 spans) x: number of spans (6 bits, up to 64 spans)
y: = 0 (0), = 1 (1), =2 (2), > 2 reserved y: 0 (0), 1 (1), 2 (2), > 2 reserved
t: = 4 (D), all other values are reserved t: 4 (D), all other values are reserved
z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3) z: 0 reserved, 1 (1), 2 (2), 3 (3)
suffix is a 6-bit bitmap: suffix: a 6-bit bitmap, where a "1" in the appropriate slot
indicates that the corresponding suffix has been added.
0 1 2 3 4 5 0 1 2 3 4 5
+-+-+-+-+-+-+ +-+-+-+-+-+-+
|F|0|0|0|0|0| |F|0|0|0|0|0|
+-+-+-+-+-+-+ +-+-+-+-+-+-+
where a 1 in the appropriate slot indicates that the corresponding
suffix has been added.
4.2. Acceptable Client Signal List Subfield 4.2. Acceptable Client Signal List Subfield
This subfield contains a list of acceptable input client signal This subfield contains a list of acceptable input client signal
types. types.
The acceptable client signal list is a list of Generalized Protocol The acceptable client signal list is a list of Generalized Protocol
Identifiers (G-PIDs). Identifiers (G-PIDs).
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Number of G-PIDs | | Reserved | Number of G-PIDs |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-PID #1 | G-PID #2 | | G-PID #1 | G-PID #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: | : : | :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-PID #N | | | G-PID #N | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type (16 bits): identifies the Acceptable Client Signal List field. Number of G-PIDs: an integer greater than or equal to one.
Length (16 bits): The Length field defines the length of the value
portion in octets.
The number of G-PIDs is an integer greater than or equal to one.
G-PIDs are assigned by IANA and many are defined in [RFC3471] and G-PIDs: assigned by IANA. Many are defined in [RFC3471] and
[RFC4328]. [RFC4328].
4.3. Input Bit Rate List Subfield 4.3. Input Bit Rate List Subfield
This subfield contains a list of bit rates of each input client This subfield contains a list of bit rates of each input client
signal type specified in the Input Client Signal List. signal type specified in the Input Client Signal List.
The number of Input Bit Rates MUST match the number of G-PIDs. The number of Input Bit Rates MUST match the number of G-PIDs.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Bit Rate of G-PID #1 | | Input Bit Rate of G-PID #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Bit Rate of G-PID #N | | Input Bit Rate of G-PID #N |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Input Bit Rates are in IEEE 754 floating point format [IEEE]. Input Bit Rates are in IEEE 754 floating point format [IEEE].
4.4. Processing Capability List Subfield 4.4. Processing Capability List Subfield
The processing capability list field is a list of capabilities that The Processing Capability List subfield is a list of capabilities
can be achieved through the referred resources: that can be achieved through the referred resources:
1. Regeneration capability 1. Regeneration capability
2. Fault and performance monitoring 2. Fault and performance monitoring
3. Vendor specific capability 3. Vendor-specific capability
Fault and performance monitoring and Vendor specific capability have Fault and performance monitoring and vendor-specific capability have
no additional capability parameters. no additional capability parameters.
The processing capability list field is then given by: The Processing Capability List subfield is defined as:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Processing Cap ID | | Reserved | Processing Cap ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Possible additional capability parameters depending upon | | Possible additional capability parameters depending upon |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: the processing ID : : the processing ID :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The processing capability ID field defines the following processing The Processing Cap ID field defines the following processing
capabilities: capabilities:
0: Reserved 0: Reserved
1: Regeneration capability 1: Regeneration capability
2: Fault and performance monitoring 2: Fault and performance monitoring
3: Vendor specific capability 3: Vendor-specific capability
When the processing Cap ID is "regeneration capability", the When the Processing Cap ID is "Regeneration capability", the
following additional capability parameters are provided in the following additional capability parameters are provided in the
following field: following field:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| T | C | Reserved | | T | C | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where the T bit indicates the type of regenerator: Where the T bit indicates the type of regenerator:
T=0: Reserved T=0: Reserved
T=1: 1R Regenerator T=1: 1R Regenerator
T=2: 2R Regenerator T=2: 2R Regenerator
T=3: 3R Regenerator T=3: 3R Regenerator
Where the C bit indicates the capability of the regenerator: And where the C bit indicates the capability of the regenerator:
C=0: Reserved C=0: Reserved
C=1: Fixed Regeneration Point C=1: Fixed Regeneration Point
C=2: Selective Regeneration Pools C=2: Selective Regeneration Pools
Note that when the capability of the regenerator is indicated to be Note that when the capability of the regenerator is indicated to be
Selective Regeneration Pools, regeneration pool properties such as "Selective Regeneration Pools", regeneration pool properties such as
input and output restrictions and availability need to be specified. input and output restrictions and availability need to be specified.
These properties will be encoded in the capabilities field starting These properties will be encoded in the field providing additional
with the bits marked Reserved in the figure. An additional capability parameters, starting with the bits marked Reserved in the
specification describing the encoding of these parameters is figure immediately above. An additional specification describing the
required before the value C=2 can be used. encoding of these parameters is required before the value C=2 can be
used.
5. Security Considerations 5. Security Considerations
This document defines protocol-independent encodings for WSON This document defines protocol-independent encodings for WSON
information and does not introduce any security issues. information and does not introduce any security issues.
However, other documents that make use of these encodings within However, other documents that make use of these encodings within
protocol extensions need to consider the issues and risks associated protocol extensions need to consider the issues and risks associated
with inspection, interception, modification, or spoofing of any of with inspection, interception, modification, or spoofing of any of
this information. It is expected that any such documents will this information. It is expected that any such documents will
describe the necessary security measures to provide adequate describe the necessary security measures to provide adequate
protection. A general discussion on security in GMPLS networks can protection. A general discussion on security in GMPLS networks can
be found in [RFC5920]. be found in [RFC5920].
6. IANA Considerations 6. IANA Considerations
This document introduces a new top-level registry for GMPLS routing This document introduces a new top-level registry for GMPLS routing
parameters for WSON encoding. This new IANA registry will be created parameters for WSON encoding. This new IANA registry has been
to make the assignment of a new type and new values for the new created to make the assignment of a new type and new values for the
"GMPLS Routing Parameters for WSON". Note that this registry is only new "GMPLS Routing Parameters for WSON" registry. Note that this
used in routing, not in signaling. registry is only used in routing, not in signaling.
6.1. Types for subfields of WSON Resource Block Information 6.1. Types for Subfields of WSON Resource Block Information
Under this new GMPLS Routing Parameters for WSON, a new IANA Under the new "GMPLS Routing Parameters for WSON" registry, a new
registry will be created for nested subfields of the Resource Block IANA subregistry has been created for nested subfields of the
Information field to create a new section named "Types for subfields Resource Block Information field to create a new section named "Types
of WSON Resource Block Information Registry". The new registry will for Subfields of WSON Resource Block Information Registry". This
be maintained via Standards Action as defined by [RFC5226]. registry will be maintained via Standards Action as defined by
[RFC5226].
There are initial values in the new registry as follows: The initial values in the registry are as follows:
Value Length Sub-TLV Type Reference Value Length Description Reference
----- ------ ------------ ---------
0 Reserved
1 variable Optical Interface Class List [RFC7581]
2 variable Acceptable Client Signal List [RFC7581]
3 variable Input Bit Rate List [RFC7581]
4 variable Processing Capability List [RFC7581]
5-65535 Unassigned
0 Reserved 7. References
1 variable Optical Interface Class List [This.I-D]
2 variable Acceptable Client
Signal List [This.I-D]
3 variable Input Bit Rate List [This.I-D] 7.1. Normative References
4 variable Processing Capability List [This.I-D]
5-65535 Unassigned
7. Acknowledgments [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
This document was prepared using 2-Word-v2.0.template.dot. [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Extensions for G.709 Optical
Transport Networks Control", RFC 4328,
DOI 10.17487/RFC4328, January 2006,
<http://www.rfc-editor.org/info/rfc4328>.
APPENDIX A: Encoding Examples [RFC6205] Otani, T., Ed., and D. Li, Ed., "Generalized Labels for
Lambda-Switch-Capable (LSC) Label Switching Routers",
RFC 6205, DOI 10.17487/RFC6205, March 2011,
<http://www.rfc-editor.org/info/rfc6205>.
A.1. Wavelength Converter Accessibility Field [RFC7446] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku,
"Routing and Wavelength Assignment Information Model for
Wavelength Switched Optical Networks", RFC 7446,
DOI 10.17487/RFC7446, February 2015,
<http://www.rfc-editor.org/info/rfc7446>.
Example: [RFC7579] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and
J. Han, "General Network Element Constraint Encoding for
GMPLS-Controlled Networks", RFC 7579,
DOI 10.17487/RFC7579, June 2015,
<http://www.rfc-editor.org/info/rfc7579>.
7.2. Informative References
[G.652] ITU-T, "Characteristics of a single-mode optical fibre and
cable", ITU-T Recommendation G.652, November 2009.
[G.653] ITU-T, "Characteristics of a dispersion-shifted, single-
mode optical fibre and cable", ITU-T Recommendation G.653,
July 2010.
[G.655] ITU-T, "Characteristics of a non-zero dispersion-shifted
single-mode optical fibre and cable", ITU-T Recommendation
G.655, November 2009.
[G.695] ITU-T, "Optical interfaces for coarse wavelength division
multiplexing applications", ITU-T Recommendation G.695,
January 2015.
[G.698.1] ITU-T, "Multichannel DWDM applications with single-channel
optical interfaces", ITU-T Recommendation G.698.1,
November 2009.
[G.698.2] ITU-T, "Amplified multichannel dense wavelength division
multiplexing applications with single channel optical
interfaces", ITU-T Recommendation G.698.2, November 2009.
[G.959.1] ITU-T, "Optical transport network physical layer
interfaces", ITU-T Recommendation G.959.1, February 2012.
[IEEE] IEEE, "IEEE Standard for Binary Floating-Point
Arithmetic", IEEE Standard 754.
[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Functional Description",
RFC 3471, DOI 10.17487/RFC3471, January 2003,
<http://www.rfc-editor.org/info/rfc3471>.
[RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions
in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005,
<http://www.rfc-editor.org/info/rfc4203>.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
DOI 10.17487/RFC5226, May 2008,
<http://www.rfc-editor.org/info/rfc5226>.
[RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions
in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 5307, DOI 10.17487/RFC5307, October 2008,
<http://www.rfc-editor.org/info/rfc5307>.
[RFC5440] Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path Computation
Element (PCE) Communication Protocol (PCEP)", RFC 5440,
DOI 10.17487/RFC5440, March 2009,
<http://www.rfc-editor.org/info/rfc5440>.
[RFC5511] Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
Used to Form Encoding Rules in Various Routing Protocol
Specifications", RFC 5511, DOI 10.17487/RFC5511, April
2009, <http://www.rfc-editor.org/info/rfc5511>.
[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS
Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
<http://www.rfc-editor.org/info/rfc5920>.
[RFC6163] Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku,
"Framework for GMPLS and Path Computation Element (PCE)
Control of Wavelength Switched Optical Networks (WSONs)",
RFC 6163, DOI 10.17487/RFC6163, April 2011,
<http://www.rfc-editor.org/info/rfc6163>.
Appendix A. Encoding Examples
A.1. Wavelength Converter Accessibility Field
Figure 1 shows a wavelength converter pool architecture known as Figure 1 shows a wavelength converter pool architecture known as
"shared per fiber". In this case the input and output pool matrices "shared per fiber". In this case, the input and output pool matrices
are simply: are simply:
+-----+ +-----+ +-----+ +-----+
| 1 1 | | 1 0 | | 1 1 | | 1 0 |
WI =| |, WE =| | WI =| |, WE =| |
| 1 1 | | 0 1 | | 1 1 | | 0 1 |
+-----+ +-----+ +-----+ +-----+
+-----------+ +------+ +-----------+ +------+
| |--------------------->| | | |--------------------->| |
| |--------------------->| C | | |--------------------->| C |
/| | |--------------------->| o | /| | |--------------------->| o |
/D+--->| |--------------------->| m | /D+--->| |--------------------->| m |
+ e+--->| | | b |=======> + e+--->| | | b |=======>
========>| M| | Optical | +-----------+ | i | Port O1 ========>| M| | Optical | +-----------+ | i | Port O1
Port I1 + u+--->| Switch | | WC Pool | | n | Port I1 + u+--->| Switch | | WC Pool | | n |
\x+--->| | | +-----+ | | e | \x+--->| | | +-----+ | | e |
\| | +----+->|WC #1|--+---->| r | \| | +----+->|WC #1|--+---->| r |
| | | +-----+ | +------+ | | | +-----+ | +------+
| | | | +------+ | | | | +------+
/| | | | +-----+ | | | /| | | | +-----+ | | |
/D+--->| +----+->|WC #2|--+---->| C | /D+--->| +----+->|WC #2|--+---->| C |
+ e+--->| | | +-----+ | | o | + e+--->| | | +-----+ | | o |
========>| M| | | +-----------+ | m |=======> ========>| M| | | +-----------+ | m |=======>
Port I2 + u+--->| | | b | Port O2 Port I2 + u+--->| | | b | Port O2
\x+--->| |--------------------->| i | \x+--->| |--------------------->| i |
\| | |--------------------->| n | \| | |--------------------->| n |
| |--------------------->| e | | |--------------------->| e |
| |--------------------->| r | | |--------------------->| r |
+-----------+ +------+ +-----------+ +------+
Figure 1 An optical switch featuring a shared per fiber wavelength
converter pool architecture. Figure 1: An Optical Switch Featuring a Shared Per-Fiber Wavelength
Converter Pool Architecture
The wavelength converters are resource blocks and the wavelength The wavelength converters are resource blocks and the wavelength
converter pool is a resource block pool. This can be encoded as converter pool is a resource block pool. This can be encoded as
follows: follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |1| Reserved | | Reserved |1| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: I1,I2 can connect to either WC1 or WC2 Note: I1,I2 can connect to either WC1 or WC2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0| Reserved | Length = 12 | | Action=0 |0| Reserved | Length = 12 |
skipping to change at page 31, line 5 skipping to change at page 32, line 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1| Reserved | Length = 8 | | Action=0 |1| Reserved | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 | | Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0| | Length = 8 | | Action=0 |0| | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB ID = #2 | | RB ID = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.2. Wavelength Conversion Range Field A.2. Wavelength Conversion Range Field
Example:
This example, based on figure 1, shows how to represent the This example, based on Figure 1, shows how to represent the
wavelength conversion range of wavelength converters. Suppose the wavelength conversion range of wavelength converters. Suppose the
wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, wavelength range of input and output of WC1 and WC2 are {L1, L2, L3,
L4}: L4}:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Note: WC Set Note: WC Set
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1| Reserved | Length = 8 | | Action=0 |1| Reserved | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC ID = #1 | WC ID = #2 | | WC ID = #1 | WC ID = #2 |
skipping to change at page 31, line 35 skipping to change at page 32, line 33
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 1 | |Grid | C.S. | Reserved | n for lowest frequency = 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: wavelength output range Note: wavelength output range
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 2 | Num Wavelengths = 4 | Length = 8 | | 2 | Num Wavelengths = 4 | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 1 | |Grid | C.S. | Reserved | n for lowest frequency = 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.3. An OEO Switch with DWDM Optics A.3. An OEO Switch with DWDM Optics
Figure 2 shows an electronic switch fabric surrounded by DWDM Figure 2 shows an electronic switch fabric surrounded by DWDM optics.
optics. In this example the electronic fabric can handle either In this example, the electronic fabric can handle either G.709 or
G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node, Synchronous Digital Hierarchy (SDH) signals only (2.5 or 10 Gbps).
the following information in RBNF form [RFC5511] is needed: To describe this node, the following information in Reduced Backus-
Naur Form (RBNF) form [RFC5511] is needed:
<Node_Info> ::= <Node_ID> <Node_Info> ::= <Node_ID>
[Other GMPLS info-elements] [Other GMPLS info-elements]
[<ConnectivityMatrix>...] [<ConnectivityMatrix>...]
[<ResourcePool>] [<ResourcePool>]
[<RBPoolState>] [<RBPoolState>]
In this case there is complete port-to-port connectivity so the In this case, there is complete port-to-port connectivity, so the
<ConnectivityMatrix> is not required. In addition since there are <ConnectivityMatrix> is not required. In addition, since there are
sufficient ports to handle all wavelength signals the <RBPoolState> sufficient ports to handle all wavelength signals, the <RBPoolState>
element is not needed. element is not needed.
Hence the attention will be focused on the <ResourcePool> field: Hence, the attention will be focused on the <ResourcePool> field:
<ResourcePool> ::= <ResourceBlockInfo> <ResourcePool> ::= <ResourceBlockInfo>
[<RBAccessibility>...] [<RBAccessibility>...]
[<ResourceWaveConstraints>...] [<ResourceWaveConstraints>...]
/| +-----------+ +-------------+ +------+ /| +-----------+ +-------------+ +------+
/D+--->| +--->|Tunable Laser|-->| | /D+--->| +--->|Tunable Laser|-->| |
+ e+--->| | +-------------+ | C | + e+--->| | +-------------+ | C |
========>| M| | | ... | o |=======> ========>| M| | | ... | o |=======>
Port I1 + u+--->| | +-------------+ | m | Port O1 Port I1 + u+--->| | +-------------+ | m | Port O1
\x+--->| |--->|Tunable Laser|-->| b | \x+--->| |--->|Tunable Laser|-->| b |
\| | Electric | +-------------+ +------+ \| | Electric | +-------------+ +------+
| Switch | | Switch |
/| | | +-------------+ +------+ /| | | +-------------+ +------+
skipping to change at page 32, line 44 skipping to change at page 33, line 42
\| | | +-------------+ +------+ \| | | +-------------+ +------+
| | | |
/| | | +-------------+ +------+ /| | | +-------------+ +------+
/D+--->| |--->|Tunable Laser|-->| | /D+--->| |--->|Tunable Laser|-->| |
+ e+--->| | +-------------+ | C | + e+--->| | +-------------+ | C |
========>| M| | | ... | o |=======> ========>| M| | | ... | o |=======>
Port I3 + u+--->| | +-------------+ | m | Port O3 Port I3 + u+--->| | +-------------+ | m | Port O3
\x+--->| |--->|Tunable Laser|-->| b | \x+--->| |--->|Tunable Laser|-->| b |
\| +-----------+ +-------------+ +------+ \| +-----------+ +-------------+ +------+
Figure 2 An optical switch built around an electronic switching Figure 2: An Optical Switch Built around
fabric. an Electronic Switching Fabric
The resource block information will tell us about the processing The resource block information will tell us about the processing
constraints of the receivers, transmitters, and the electronic constraints of the receivers, transmitters, and the electronic
switch. The resource availability information, although very simple, switch. The resource availability information, although very simple,
tells us that all signals must traverse the electronic fabric (fixed tells us that all signals must traverse the electronic fabric (fixed
connectivity). The resource wavelength constraints are not needed connectivity). The resource wavelength constraints are not needed
since there are no special wavelength constraints for the resources since there are no special wavelength constraints for the resources
that would not appear as port/wavelength constraints. that would not appear as port/wavelength constraints.
<ResourceBlockInfo>: The <ResourceBlockInfo> is encoded as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field | | RB Set Field |
: (only one resource block in this example with shared | : (only one resource block in this example with shared |
| input/output case) | | input/output case) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1|1|0| Reserved | |1|1|0| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optical Interface Class List(s) | | Optical Interface Class List(s) |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Client Signal Type | | Input Client Signal Type |
: (G-PIDs for SDH and G.709) : : (G-PIDs for SDH and G.709) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Bit Rate Range List | | Input Bit Rate Range List |
: (2.5Gbps, 10Gbps) : : (2.5 Gbps, 10 Gbps) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Processing Capabilities List | | Processing Capabilities List |
: Fixed (non optional) 3R regeneration : : Fixed (non optional) 3R regeneration :
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Since there is fixed connectivity to resource blocks (the electronic Since there is fixed connectivity to resource blocks (the electronic
switch) the <RBAccessibility> is: switch), the <RBAccessibility> is:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Connectivity=0|Reserved | | Connectivity=0|Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Link Set Field A #1 | | Input Link Set Field A #1 |
: (All input links connect to resource) : : (All input links connect to resource) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field A #1 | | RB Set Field A #1 |
: (trivial set only one resource block) : : (trivial set only one resource block) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Link Set Field B #1 | | Output Link Set Field B #1 |
: (All output links connect to resource) : : (All output links connect to resource) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8. References Contributors
8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Extensions for G.709 Optical
Transport Networks Control", RFC 4328, January 2006.
[Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General
Network Element Constraint Encoding for GMPLS Controlled
Networks", work in progress: draft-ietf-ccamp-general-
constraint-encode.
[RWA-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and
Wavelength Assignment Information Model for Wavelength
Switched Optical Networks", work in progress: draft-ietf-
ccamp-rwa-info.
[RFC6205] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized
Labels for G.694 Lambda-Switching Capable Label Switching
Routers", RFC 6205, March 2011.
8.2. Informative References
[IEEE] IEEE, "IEEE Standard for Binary Floating-Point
Arithmetic", Standard 754-1985, 1985 (ISBN 1-5593-7653-8).
[G.652] ITU-T Recommendation G.652, Characteristics of a single-mode
optical fibre and cable, September, 2011.
[G.653] ITU-T Recommendation G.653, Characteristics of a dispersion-
shifted, single-mode optical fibre and cable, July,
2010.
[G.655] ITU-T Recommendation G.655, Characteristics of a non-zero
dispersion-shifted single-mode optical fibre and cable,
September, 2011.
[G.698.1] ITU-T Recommendation G.698.1, Spectral grids for WDM
applications: DWDM frequency grid, June 2002.
[G.698.2] ITU-T Recommendation G.698.2, Spectral grids for WDM
applications: CWDM wavelength grid, December 2003.
[G.695] ITU-T Recommendation G.695, Optical interfaces for coarse
wavelength division multiplexing applications, October,
2010.
[G.959.1] ITU-T Recommendation G.959.1, Optical transport network
physical layer interfaces, February, 2012.
[RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching
(GMPLS) Signaling Functional Description", RFC 3471,
January 2003.
[RFC4203] Kompella, L. and Y. Rekhter, Eds., "OSPF Extensions in
Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 4203, October 2005.
[RFC5226] Narten, T., Alvestrand, H., "Guidelines for Writing an
IANA Considerations Section in RFCs", RFC 5226, May 2008.
[RFC5307] Kompella, L. and Y. Rekhter, Eds., "IS-IS Extensions in
Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 5307, October, 2008.
[RFC5440] Vasseur, JP. and Le Roux, JL., Eds., "Path Computation
Element (PCE) Communication Protocol (PCEP)", RFC 5440,
March 2009.
[RFC5511] A. Farrel, "Routing Backus-Naur Form (RBNF): A Syntax Used
to Form Encoding Rules in Various Routing Protocol Specifications",
RFC 5511, April 2009.
[RFC5920] L. Fang, Ed., "Security Framework for MPLS and GMPLS
Networks", RFC 5920, July 2010.
[RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS and
PCE Control of Wavelength Switched Optical Networks", RFC
6163, April 2011.
9. Contributors
Diego Caviglia Diego Caviglia
Ericsson Ericsson
Via A. Negrone 1/A 16153 Via A. Negrone 1/A 16153
Genoa Italy Genoa
Italy
Phone: +39 010 600 3736 Phone: +39 010 600 3736
Email: diego.caviglia@ericsson.com EMail: diego.caviglia@ericsson.com
Anders Gavler Anders Gavler
Acreo AB Acreo AB
Electrum 236 Electrum 236
SE - 164 40 Kista Sweden SE - 164 40 Kista
Sweden
Email: Anders.Gavler@acreo.se EMail: Anders.Gavler@acreo.se
Jonas Martensson Jonas Martensson
Acreo AB Acreo AB
Electrum 236 Electrum 236
SE - 164 40 Kista, Sweden SE - 164 40 Kista
Sweden
Email: Jonas.Martensson@acreo.se EMail: Jonas.Martensson@acreo.se
Itaru Nishioka Itaru Nishioka
NEC Corp. NEC Corp.
1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1753 Simonumabe
Nakahara-ku, Kawasaki, Kanagawa 211-8666
Japan Japan
Phone: +81 44 396 3287 Phone: +81 44 396 3287
Email: i-nishioka@cb.jp.nec.com EMail: i-nishioka@cb.jp.nec.com
Pierre Peloso Pierre Peloso
ALU ALU
EMail: pierre.peloso@alcatel-lucent.com
Email: pierre.peloso@alcatel-lucent.com
Cyril Margaria Cyril Margaria
Email: cyril.margaria@gmail.com EMail: cyril.margaria@gmail.com
Giovanni Martinelli Giovanni Martinelli
Cisco Cisco
EMail: giomarti@cisco.com
Email: giomarti@cisco.com
Gabriele M Galimberti Gabriele M Galimberti
Cisco Cisco
Email: ggalimbe@cisco.com EMail: ggalimbe@cisco.com
Lyndon Ong Lyndon Ong
Ciena Corporation Ciena Corporation
Email: lyong@ciena.com EMail: lyong@ciena.com
Daniele Ceccarelli Daniele Ceccarelli
Ericsson Ericsson
Email: daniele.ceccarelli@ericsson.com EMail: daniele.ceccarelli@ericsson.com
Authors' Addresses Authors' Addresses
Greg M. Bernstein (ed.) Greg M. Bernstein (editor)
Grotto Networking Grotto Networking
Fremont California, USA Fremont, California
United States
Phone: (510) 573-2237 Phone: (510) 573-2237
Email: gregb@grotto-networking.com EMail: gregb@grotto-networking.com
Young Lee (ed.) Young Lee (editor)
Huawei Technologies Huawei Technologies
5340 Legacy Drive Build 3 5340 Legacy Drive Build 3
Plano, TX 75024 Plano, TX 75024
USA United States
Phone: (469) 277-5838 Phone: (469) 277-5838
Email: leeyoung@huawei.com EMail: leeyoung@huawei.com
Dan Li Dan Li
Huawei Technologies Co., Ltd. Huawei Technologies Co., Ltd.
F3-5-B R&D Center, Huawei Base, F3-5-B R&D Center, Huawei Base,
Bantian, Longgang District Bantian, Longgang District
Shenzhen 518129 P.R.China Shenzhen 518129
China
Phone: +86-755-28973237 Phone: +86-755-28973237
Email: danli@huawei.com EMail: danli@huawei.com
Wataru Imajuku Wataru Imajuku
NTT Network Innovation Labs NTT Network Innovation Labs
1-1 Hikari-no-oka, Yokosuka, Kanagawa 1-1 Hikari-no-oka, Yokosuka, Kanagawa
Japan Japan
Phone: +81-(46) 859-4315 Phone: +81-(46) 859-4315
Email: imajuku.wataru@lab.ntt.co.jp EMail: imajuku.wataru@lab.ntt.co.jp
Jianrui Han Jianrui Han
Huawei Technologies Co., Ltd. Huawei Technologies Co., Ltd.
F3-5-B R&D Center, Huawei Base, F3-5-B R&D Center, Huawei Base,
Bantian, Longgang District Bantian, Longgang District
Shenzhen 518129 P.R.China Shenzhen 518129
China
Phone: +86-755-28972916 Phone: +86-755-28972916
Email: hanjianrui@huawei.com EMail: hanjianrui@huawei.com
 End of changes. 317 change blocks. 
658 lines changed or deleted 705 lines changed or added

This html diff was produced by rfcdiff 1.42. The latest version is available from http://tools.ietf.org/tools/rfcdiff/