--- 1/draft-ietf-ccamp-rwa-wson-encode-12.txt 2011-11-01 00:14:10.662670828 +0100 +++ 2/draft-ietf-ccamp-rwa-wson-encode-13.txt 2011-11-01 00:14:10.718723076 +0100 @@ -1,78 +1,78 @@ Network Working Group G. Bernstein Internet Draft Grotto Networking Intended status: Standards Track Y. Lee -Expires: February 2012 D. Li +Expires: April 2012 D. Li Huawei W. Imajuku NTT - August 8, 2011 + October 31, 2011 Routing and Wavelength Assignment Information Encoding for Wavelength Switched Optical Networks - draft-ietf-ccamp-rwa-wson-encode-12.txt + draft-ietf-ccamp-rwa-wson-encode-13.txt Status of this Memo - This Internet-Draft is submitted to IETF in full conformance with the - provisions of BCP 78 and BCP 79. + This Internet-Draft is submitted to IETF in full conformance with + the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. - Internet-Drafts are draft documents valid for a maximum of six months - and may be updated, replaced, or obsoleted by other documents at any - time. It is inappropriate to use Internet-Drafts as reference - material or to cite them other than as "work in progress." + Internet-Drafts are draft documents valid for a maximum of six + months and may be updated, replaced, or obsoleted by other documents + at any time. It is inappropriate to use Internet-Drafts as + reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html - This Internet-Draft will expire on January 8, 2012. + This Internet-Draft will expire on February 31, 2012. Copyright Notice Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents - carefully, as they describe your rights and restrictions with respect - to this document. Code Components extracted from this document must - include Simplified BSD License text as described in Section 4.e of - the Trust Legal Provisions and are provided without warranty as - described in the Simplified BSD License. + carefully, as they describe your rights and restrictions with + respect to this document. Code Components extracted from this + document must include Simplified BSD License text as described in + Section 4.e of the Trust Legal Provisions and are provided without + warranty as described in the Simplified BSD License. Abstract A wavelength switched optical network (WSON) requires that certain key information elements are made available to facilitate path computation and the establishment of label switching paths (LSPs). - The information model described in "Routing and Wavelength Assignment - Information for Wavelength Switched Optical Networks" shows what - information is required at specific points in the WSON. Part of the - WSON information model contains aspects that may be of general - applicability to other technologies, while other parts are fairly - specific to WSONs. + The information model described in "Routing and Wavelength + Assignment Information for Wavelength Switched Optical Networks" + shows what information is required at specific points in the WSON. + Part of the WSON information model contains aspects that may be of + general applicability to other technologies, while other parts are + fairly specific to WSONs. - This document provides efficient, protocol-agnostic encodings for the - WSON specific information elements. It is intended that protocol- - specific documents will reference this memo to describe how + This document provides efficient, protocol-agnostic encodings for + the WSON specific information elements. It is intended that + protocol-specific documents will reference this memo to describe how information is carried for specific uses. Such encodings can be used to extend GMPLS signaling and routing protocols. In addition these encodings could be used by other mechanisms to convey this same information to a path computation element (PCE). Conventions used in this document The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119]. @@ -94,53 +94,54 @@ 1.1.11. Changes from 10 draft...............................6 1.1.12. Changes from 11 draft...............................6 2. Terminology....................................................6 3. Resources, Blocks, Sets, and the Resource Pool.................7 3.1. Resource Block Set Field..................................8 4. Resource Pool Accessibility/Availability.......................9 4.1. Resource Pool Accessibility Sub-TLV.......................9 4.2. Resource Block Wavelength Constraints Sub-TLV............11 4.3. Resource Pool State Sub-TLV..............................12 4.4. Block Shared Access Wavelength Availability sub-TLV......13 - 5. Resource Properties Encoding..................................14 + 5. Resource Properties Encoding..................................15 5.1. Resource Block Information Sub-TLV.......................15 5.2. Input Modulation Format List Sub-Sub-TLV.................16 - 5.2.1. Modulation Format Field.............................16 + 5.2.1. Modulation Format Field.............................17 5.3. Input FEC Type List Sub-Sub-TLV..........................18 - 5.3.1. FEC Type Field......................................18 - 5.4. Input Bit Range List Sub-Sub-TLV.........................20 - 5.4.1. Bit Range Field.....................................20 - 5.5. Input Client Signal List Sub-Sub-TLV.....................21 - 5.6. Processing Capability List Sub-Sub-TLV...................22 - 5.6.1. Processing Capabilities Field.......................22 - 5.7. Output Modulation Format List Sub-Sub-TLV................24 - 5.8. Output FEC Type List Sub-Sub-TLV.........................24 - 6. Security Considerations.......................................24 - 7. IANA Considerations...........................................25 - 8. Acknowledgments...............................................25 - APPENDIX A: Encoding Examples....................................26 - A.1. Wavelength Converter Accessibility Sub-TLV...............26 - A.2. Wavelength Conversion Range Sub-TLV......................27 - A.3. An OEO Switch with DWDM Optics...........................28 - 9. References....................................................32 - 9.1. Normative References.....................................32 - 9.2. Informative References...................................32 - 10. Contributors.................................................33 - Authors' Addresses...............................................34 - Intellectual Property Statement..................................35 - Disclaimer of Validity...........................................35 + 5.3.1. FEC Type Field......................................19 + 5.4. Input Bit Range List Sub-Sub-TLV.........................21 + 5.4.1. Bit Range Field.....................................21 + 5.5. Input Client Signal List Sub-Sub-TLV.....................22 + 5.6. Processing Capability List Sub-Sub-TLV...................23 + 5.6.1. Processing Capabilities Field.......................23 + 5.7. Output Modulation Format List Sub-Sub-TLV................25 + 5.8. Output FEC Type List Sub-Sub-TLV.........................25 + 6. Security Considerations.......................................25 + 7. IANA Considerations...........................................26 + 8. Acknowledgments...............................................26 + APPENDIX A: Encoding Examples....................................27 + A.1. Wavelength Converter Accessibility Sub-TLV...............27 + A.2. Wavelength Conversion Range Sub-TLV......................29 + A.3. An OEO Switch with DWDM Optics...........................29 + 9. References....................................................33 + 9.1. Normative References.....................................33 + 9.2. Informative References...................................33 + 10. Contributors.................................................35 + Authors' Addresses...............................................35 + Intellectual Property Statement..................................36 + Disclaimer of Validity...........................................37 1. Introduction - A Wavelength Switched Optical Network (WSON) is a Wavelength Division - Multiplexing (WDM) optical network in which switching is performed - selectively based on the center wavelength of an optical signal. + A Wavelength Switched Optical Network (WSON) is a Wavelength + Division Multiplexing (WDM) optical network in which switching is + performed selectively based on the center wavelength of an optical + signal. [RFC6163] describes a framework for Generalized Multiprotocol Label Switching (GMPLS) and Path Computation Element (PCE) control of a WSON. Based on this framework, [WSON-Info] describes an information model that specifies what information is needed at various points in a WSON in order to compute paths and establish Label Switched Paths (LSPs). This document provides efficient encodings of information needed by the routing and wavelength assignment (RWA) process in a WSON. Such @@ -169,25 +170,26 @@ New sections for wavelength converter pool encoding: Wavelength Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. Added optional wavelength converter pool TLVs to the composite node TLV. 1.1.2. Changes from 01 draft The encoding examples have been moved to an appendix. Classified and - corrected information elements as either reusable fields or sub-TLVs. - Updated Port Wavelength Restriction sub-TLV. Added available + corrected information elements as either reusable fields or sub- + TLVs. Updated Port Wavelength Restriction sub-TLV. Added available wavelength and shared backup wavelength sub-TLVs. Changed the title - and scope of section 6 to recommendations since the higher level TLVs - that this encoding will be used in is somewhat protocol specific. + and scope of section 6 to recommendations since the higher level + TLVs that this encoding will be used in is somewhat protocol + specific. 1.1.3. Changes from 02 draft Removed inconsistent text concerning link local identifiers and the link set field. Added E bit to the Wavelength Converter Set Field. Added bidirectional connectivity matrix example. Added simple link set example. Edited examples for consistency. @@ -209,22 +211,22 @@ Revised the encoding for the "shared access" indicators to only use one bit each for ingress and egress. 1.1.7. Changes from 06 draft Removed section on "WSON Encoding Usage Recommendations" 1.1.8. Changes from 07 draft Section 3: Enhanced text to clarify relationship between pools, - blocks and resources. Section 3.1, 3.2: Change title to clarify Pool- - Block relationship. Section 3.3: clarify block-resource state. + blocks and resources. Section 3.1, 3.2: Change title to clarify + Pool-Block relationship. Section 3.3: clarify block-resource state. Section 4: Deleted reference to previously removed RBNF element. Fixed TLV figures and descriptions for consistent sub-sub-TLV nomenclature. 1.1.9. Changes from 08 draft Fixed ordering of fields in second half of sub-TLV example in Appendix A.1. @@ -237,66 +239,71 @@ Removed all 1st person idioms. 1.1.11. Changes from 10 draft Removed remaining 1st person idioms. Updated IANA section. Update references for newly issued RFCs. 1.1.12. Changes from 11 draft Fixed length fields in section 4 to be 16 bits, correcting errors in - TLV and field figures. Added a separate section on resources, blocks, - sets and the resource pool. Moved definition of the resource block - set field to this new section. + TLV and field figures. Added a separate section on resources, + blocks, sets and the resource pool. Moved definition of the resource + block set field to this new section. + + 1.1.13. Changes from 12 draft + + RB Identifier field in Section 3.1 to be 32 bits from 16 bits. Added + Editorial changes and updated the contributor list. 2. Terminology CWDM: Coarse Wavelength Division Multiplexing. DWDM: Dense Wavelength Division Multiplexing. FOADM: Fixed Optical Add/Drop Multiplexer. ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port count wavelength selective switching element featuring ingress and egress line side ports as well as add/drop side ports. RWA: Routing and Wavelength Assignment. Wavelength Conversion. The process of converting an information bearing optical signal centered at a given wavelength to one with "equivalent" content centered at a different wavelength. Wavelength - conversion can be implemented via an optical-electronic-optical (OEO) - process or via a strictly optical process. + conversion can be implemented via an optical-electronic-optical + (OEO) process or via a strictly optical process. WDM: Wavelength Division Multiplexing. Wavelength Switched Optical Network (WSON): A WDM based optical network in which switching is performed selectively based on the center wavelength of an optical signal. 3. Resources, Blocks, Sets, and the Resource Pool The optical system to be encoded may contain a pool of resources of different types and properties for processing optical signals. For the purposes here a "resource" is an individual entity such as a - wavelength converter or regenerator within the optical node that acts - on an individual wavelength signal. + wavelength converter or regenerator within the optical node that + acts on an individual wavelength signal. Since resources tend to be packaged together in blocks of similar devices, e.g., on line cards or other types of modules, the fundamental unit of identifiable resource in this document is the - "resource block". A resource block may contain one or more resources. - As resource blocks are the smallest identifiable unit of processing - resource, one should group together resources into blocks if they - have similar characteristics relevant to the optical system being - modeled, e.g., processing properties, accessibility, etc. + "resource block". A resource block may contain one or more + resources. As resource blocks are the smallest identifiable unit of + processing resource, one should group together resources into blocks + if they have similar characteristics relevant to the optical system + being modeled, e.g., processing properties, accessibility, etc. This document defines the following sub-TLVs pertaining to resources within an optical node: . Resource Pool Accessibility Sub-TLV . Resource Block Wavelength Constraints Sub-TLV . Resource Pool State Sub-TLV @@ -305,95 +312,95 @@ . Resource Block Information Sub-TLV Each of these sub-TLVs works with one or more sets of resources rather than just a single resource block. This motivates the following field definition. 3.1. Resource Block Set Field In a WSON node that includes resource blocks (RB), denoting subsets of these blocks allows one to efficiently describe common properties - the blocks and to describe the structure and characteristics, if non- - trivial, of the resource pool. The RB Set field is defined in a + the blocks and to describe the structure and characteristics, if + non-trivial, of the resource pool. The RB Set field is defined in a similar manner to the label set concept of [RFC3471]. The information carried in a RB set field is defined by: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Action |E|C| Reserved | Length | + | Action |C| Reserved | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | RB Identifier 1 | RB Identifier 2 | + | RB Identifier 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | RB Identifier n-1 | RB Identifier n | + | RB Identifier n | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Action: 8 bits 0 - Inclusive List - Indicates that the TLV contains one or more RB elements that are + Indicates that the TLV contains zero or more RB elements that are included in the list. + 1 - Reserved + 2 - Inclusive Range Indicates that the TLV contains a range of RBs. The object/TLV contains two WC elements. The first element indicates the start of - the range. The second element indicates the end of the range. A value - of zero indicates that there is no bound on the corresponding portion - of the range. + the range. The second element indicates the end of the range. A + value of zero indicates that there is no bound on the corresponding + portion of the range. - E (Even bit): Set to 0 denotes an odd number of RB identifiers in - the list (last entry zero pad); Set to 1 denotes an even number of RB - identifiers in the list (no zero padding). + 3 - Reserved C (Connectivity bit): Set to 0 to denote fixed (possibly multi- cast) connectivity; Set to 1 to denote potential (switched) connectivity. Used in resource pool accessibility sub-TLV. Ignored elsewhere. - Reserved: 6 bits + Reserved: 7 bits This field is reserved. It MUST be set to zero on transmission and MUST be ignored on receipt. Length: 16 bits The total length of this field in bytes. RB Identifier: The RB identifier represents the ID of the resource block which is a - 16 bit integer. + 32 bit integer. Usage Note: the inclusive range "Action" can result in very compact - encoding of resource sets and it can be advantages to number resource - blocks in such a way so that status updates (dynamic information) can - take advantage of this efficiency. + encoding of resource sets and it can be advantages to number + resource blocks in such a way so that status updates (dynamic + information) can take advantage of this efficiency. 4. Resource Pool Accessibility/Availability This section defines the sub-TLVs for dealing with accessibility and availability of resource blocks within a pool of resources. These include the ResourceBlockAccessibility, ResourceWaveConstraints, and RBPoolState sub-TLVs. 4.1. Resource Pool Accessibility Sub-TLV - This sub-TLV describes the structure of the resource pool in relation - to the switching device. In particular it indicates the ability of an - ingress port to reach sets of resources and of a sets of resources to - reach a particular egress port. This is the PoolIngressMatrix and - PoolEgressMatrix of [WSON-Info]. + This sub-TLV describes the structure of the resource pool in + relation to the switching device. In particular it indicates the + ability of an ingress port to reach sets of resources and of a sets + of resources to reach a particular egress port. This is the + PoolIngressMatrix and PoolEgressMatrix of [WSON-Info]. The resource pool accessibility sub-TLV is defined by: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Connectivity | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ingress Link Set Field A #1 | : : @@ -430,24 +437,25 @@ Note that the direction parameter within the Link Set Field is used to indicate whether the link set is an ingress or egress link set, and the bidirectional value for this parameter is not permitted in this sub-TLV. See Appendix A.1 for an illustration of this encoding. 4.2. Resource Block Wavelength Constraints Sub-TLV Resources, such as wavelength converters, etc., may have a limited - input or output wavelength ranges. Additionally, due to the structure - of the optical system not all wavelengths can necessarily reach or - leave all the resources. These properties are described by using one - or more resource wavelength restrictions sub-TLVs as defined below: + input or output wavelength ranges. Additionally, due to the + structure of the optical system not all wavelengths can necessarily + reach or leave all the resources. These properties are described by + using one or more resource wavelength restrictions sub-TLVs as + defined below: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Input Wavelength Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ @@ -469,42 +477,43 @@ Indicates the wavelength output restrictions of RBs in the corresponding RB set. 4.3. Resource Pool State Sub-TLV The state of the pool is given by the number of resources available with particular characteristics. A resource block set is used to encode all or a subset of the resources of interest. The usage state of resources within a resource block set is encoded as either a list - of 16 bit integer values or a bit map indicating whether a single - resource is available or in use. The bit map encoding is appropriate - when resource blocks consist of a single resource. This information - can be relatively dynamic, i.e., can change when a connection (LSP is - established or torn down. + of 16 bit integer values indicating the number of available + resources in the resource block, or a bit map indicating whether a + particular resource is available or in use. The bit map encoding is + appropriate when resource blocks consist of a single resource. This + information can be relatively dynamic, i.e., can change when a + connection (LSP is established or torn down. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Usage state | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where Action = 0 denotes a list of 16 bit integers and Action = 1 - denotes a bit map. In both cases the elements of the RB Set field are - in a one-to-one correspondence with the values in the usage RB usage - state area. + denotes a bit map. In both cases the elements of the RB Set field + are in a one-to-one correspondence with the values in the usage RB + usage state area. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action = 0 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB#1 state | RB#2 state | @@ -524,21 +533,21 @@ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Usage state bitmap | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ...... | Padding bits | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - RB Usage state: Variable Length but must be a multiple of 4 byes. + RB Usage state: Variable Length but must be a multiple of 4 bytes. Each bit indicates the usage status of one RB with 0 indicating the RB is available and 1 indicating the RB is in used. The sequence of the bit map is ordered according to the RB Set field with this sub- TLV. Padding bits: Variable Length 4.4. Block Shared Access Wavelength Availability sub-TLV @@ -570,39 +580,39 @@ Indicates whether the egress available wavelength set field is included (1) or not (0). RB Set Field: A Resource Block set in which all the members share the same ingress or egress fiber or both. Ingress Available Wavelength Set Field: - Indicates the wavelengths currently available (not being used) on the - ingress fiber to this resource block. + Indicates the wavelengths currently available (not being used) on + the ingress fiber to this resource block. Egress Available Wavelength Set Field: - Indicates the wavelengths currently available (not being used) on the - egress fiber from this resource block. + Indicates the wavelengths currently available (not being used) on + the egress fiber from this resource block. 5. Resource Properties Encoding - Within a WSON network element (NE) there may be resources with signal - compatibility constraints. These resources be regenerators, + Within a WSON network element (NE) there may be resources with + signal compatibility constraints. These resources be regenerators, wavelength converters, etc... Such resources may also constitute the network element as a whole as in the case of an electro optical switch. This section primarily focuses on the signal compatibility and processing properties of such a resource block. - The fundamental properties of a resource block, such as a regenerator - or wavelength converter, are: + The fundamental properties of a resource block, such as a + regenerator or wavelength converter, are: (a)Input constraints (shared ingress, modulation, FEC, bit rate, GPID) (b)Processing capabilities (number of resources in a block, regeneration, performance monitoring, vendor specific) (c)Output Constraints (shared egress, modulation, FEC) 5.1. Resource Block Information Sub-TLV @@ -662,30 +671,30 @@ Two different types of modulation format fields are defined: a standard modulation field and a vendor specific modulation field. Both start with the same 32 bit header shown below. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |S|I| Modulation ID | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - Where S bit set to 1 indicates a standardized modulation format and S - bit set to 0 indicates a vendor specific modulation format. The + Where S bit set to 1 indicates a standardized modulation format and + S bit set to 0 indicates a vendor specific modulation format. The length is the length in bytes of the entire modulation type field. Where I bit set to 1 indicates it is an input modulation constraint and I bit set to 0 indicates it is an output modulation constraint. - Note that if an output modulation is not specified then it is implied - that it is the same as the input modulation. In such case, no - modulation conversion is performed. + Note that if an output modulation is not specified then it is + implied that it is the same as the input modulation. In such case, + no modulation conversion is performed. The format for the standardized type for the input modulation is given by: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|1| Modulation ID | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Possible additional modulation parameters depending upon | @@ -723,25 +732,26 @@ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : Any vendor specific additional modulation parameters : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Vendor Modulation ID This is a vendor assigned identifier for the modulation type. Enterprise Number - A unique identifier of an organization encoded as a 32-bit integer. - Enterprise Numbers are assigned by IANA and managed through an IANA - registry [RFC2578]. + A unique identifier of an organization encoded as a 32-bit + integer. Enterprise Numbers are assigned by IANA and managed + through an IANA registry [RFC2578]. Vendor Specific Additional parameters + There can be potentially additional parameters characterizing the vendor specific modulation. 5.3. Input FEC Type List Sub-Sub-TLV This sub-sub-TLV contains a list of acceptable FEC types. Type := Input FEC Type field List Value := A list of FEC type Fields @@ -830,32 +840,33 @@ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : Any vendor specific additional FEC parameters : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Vendor FEC ID This is a vendor assigned identifier for the FEC type. Enterprise Number - A unique identifier of an organization encoded as a 32-bit integer. - Enterprise Numbers are assigned by IANA and managed through an IANA - registry [RFC2578]. + A unique identifier of an organization encoded as a 32-bit + integer. Enterprise Numbers are assigned by IANA and managed + through an IANA registry [RFC2578]. Vendor Specific Additional FEC parameters There can be potentially additional parameters characterizing the vendor specific FEC. 5.4. Input Bit Range List Sub-Sub-TLV - This sub-sub-TLV contains a list of acceptable input bit rate ranges. + This sub-sub-TLV contains a list of acceptable input bit rate + ranges. Type := Input Bit Range List Value := A list of Bit Range Fields 5.4.1. Bit Range Field The bit rate range list sub-TLV makes use of the following bit rate range field: @@ -890,34 +901,35 @@ 5.5. Input Client Signal List Sub-Sub-TLV This sub-sub-TLV contains a list of acceptable input client signal types. Type := Input Client Signal List Value := A list of GPIDs The acceptable client signal list sub-TLV is a list of Generalized - Protocol Identifiers (GPIDs). GPIDs are assigned by IANA and many are - defined in [RFC3471] and [RFC4328]. + Protocol Identifiers (GPIDs). GPIDs are assigned by IANA and many + are defined in [RFC3471] and [RFC4328]. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Number of GPIDs | GPID #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : | : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | GPID #N | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - Where the number of GPIDs is an integer greater than or equal to one. + Where the number of GPIDs is an integer greater than or equal to + one. 5.6. Processing Capability List Sub-Sub-TLV This sub-sub-TLV contains a list of resource block processing capabilities. Type := Processing Capabilities List Value := A list of Processing Capabilities Fields @@ -1033,45 +1045,45 @@ This document was prepared using 2-Word-v2.0.template.dot. APPENDIX A: Encoding Examples A.1. Wavelength Converter Accessibility Sub-TLV Example: Figure 1 shows a wavelength converter pool architecture know as - "shared per fiber". In this case the ingress and egress pool matrices - are simply: + "shared per fiber". In this case the ingress and egress pool + matrices are simply: +-----+ +-----+ | 1 1 | | 1 0 | WI =| |, WE =| | | 1 1 | | 0 1 | +-----+ +-----+ +-----------+ +------+ | |--------------------->| | | |--------------------->| C | /| | |--------------------->| o | /D+--->| |--------------------->| m | - + e+--->| | | b |========> + + e+--->| | | b |=======> ========>| M| | Optical | +-----------+ | i | Port E1 Port I1 + u+--->| Switch | | WC Pool | | n | \x+--->| | | +-----+ | | e | \| | +----+->|WC #1|--+---->| r | | | | +-----+ | +------+ | | | | +------+ /| | | | +-----+ | | | /D+--->| +----+->|WC #2|--+---->| C | + e+--->| | | +-----+ | | o | - ========>| M| | | +-----------+ | m |========> + ========>| M| | | +-----------+ | m |=======> Port I2 + u+--->| | | b | Port E2 \x+--->| |--------------------->| i | \| | |--------------------->| n | | |--------------------->| e | | |--------------------->| r | +-----------+ +------+ Figure 1 An optical switch featuring a shared per fiber wavelength converter pool architecture. This wavelength converter pool can be encoded as follows: @@ -1081,126 +1093,135 @@ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Connectivity=1| Reserved | Note: I1,I2 can connect to either WC1 or WC2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0 1|0 0 0 0 0 0| Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Action=0 |1| Reserved | Length = 8 | + | Action=0 |1| Reserved | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | RB ID = #1 | RB ID = #2 | + | RB ID = #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | RB ID = #2 | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + Note: WC1 can only connect to E1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0| Reserved | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | RB ID = #1 | zero padding | + | RB ID = #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + Note: WC2 can only connect to E2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Action=0 |0| | Length = 8 | + | Action=0 |0| Reserved | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | RB ID = #2 | zero padding | + | RB ID = #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ A.2. Wavelength Conversion Range Sub-TLV Example: This example, based on figure 1, shows how to represent the wavelength conversion range of wavelength converters. Suppose the wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, L4}: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Note: WC Set +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Action=0 |1| Reserved | Length = 8 | + | Action=0 |1| Reserved | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | WC ID = #1 | WC ID = #2 | + | WC ID = #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | WC ID = #2 | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + Note: wavelength input range +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 2 | Num Wavelengths = 4 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n for lowest frequency = 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + Note: wavelength output range +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 2 | Num Wavelengths = 4 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n for lowest frequency = 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ A.3. An OEO Switch with DWDM Optics - Figure 2 shows an electronic switch fabric surrounded by DWDM optics. - In this example the electronic fabric can handle either G.709 or SDH - signals only (2.5 or 10 Gbps). To describe this node, the following - information is needed: + Figure 2 shows an electronic switch fabric surrounded by DWDM + optics. In this example the electronic fabric can handle either + G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node, + the following information is needed: ::= [Other GMPLS sub- TLVs][...] [][] In this case there is complete port to port connectivity so the is not required. In addition since there are sufficient ports to handle all wavelength signals the element is not needed. Hence the attention will be focused on the sub-TLV: ::= - [...][...] + [...][...] + /| +-----------+ +-------------+ +------+ /D+--->| +--->|Tunable Laser|-->| | + e+--->| | +-------------+ | C | - ========>| M| | | ... | o |========> + ========>| M| | | ... | o |=======> Port I1 + u+--->| | +-------------+ | m | Port E1 \x+--->| |--->|Tunable Laser|-->| b | \| | Electric | +-------------+ +------+ | Switch | /| | | +-------------+ +------+ /D+--->| +--->|Tunable Laser|-->| | + e+--->| | +-------------+ | C | - ========>| M| | | ... | o |========> + ========>| M| | | ... | o |=======> Port I2 + u+--->| | +-------------+ | m | Port E2 \x+--->| +--->|Tunable Laser|-->| b | \| | | +-------------+ +------+ | | /| | | +-------------+ +------+ /D+--->| |--->|Tunable Laser|-->| | + e+--->| | +-------------+ | C | - ========>| M| | | ... | o |========> + ========>| M| | | ... | o |=======> Port I3 + u+--->| | +-------------+ | m | Port E3 \x+--->| |--->|Tunable Laser|-->| b | \| +-----------+ +-------------+ +------+ Figure 2 An optical switch built around an electronic switching fabric. The resource block information will tell us about the processing - constraints of the receivers, transmitters and the electronic switch. - The resource availability information, although very simple, tells us - that all signals must traverse the electronic fabric (fixed + constraints of the receivers, transmitters and the electronic + switch. The resource availability information, although very simple, + tells us that all signals must traverse the electronic fabric (fixed connectivity). The resource wavelength constraints are not needed since there are no special wavelength constraints for the resources that would not appear as port/wavelength constraints. : 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field | @@ -1230,21 +1251,21 @@ | Output FEC Type List Sub-Sub-TLV | : Standard SDH, G.709 FECs : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Since there is fixed connectivity to resource blocks (the electronic switch) the is: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Connectivity=1|Reserved | + | Connectivity=1|Reserved | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ingress Link Set Field A #1 | : (All ingress links connect to resource) : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field A #1 | : (trivial set only one resource block) : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Egress Link Set Field B #1 | : (All egress links connect to resource) : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ @@ -1281,23 +1302,23 @@ [Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General Network Element Constraint Encoding for GMPLS Controlled Networks", work in progress: draft-ietf-ccamp-general- constraint-encode. [RFC6205] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized Labels for G.694 Lambda-Switching Capable Label Switching Routers", RFC 6205, March 2011. - [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS and - PCE Control of Wavelength Switched Optical Networks", RFC - 6163, April 2011. + [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS + and PCE Control of Wavelength Switched Optical Networks", + RFC 6163, April 2011. [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and Wavelength Assignment Information Model for Wavelength Switched Optical Networks", work in progress: draft-ietf- ccamp-rwa-info, March 2009. 10. Contributors Diego Caviglia Ericsson @@ -1296,55 +1317,58 @@ Wavelength Assignment Information Model for Wavelength Switched Optical Networks", work in progress: draft-ietf- ccamp-rwa-info, March 2009. 10. Contributors Diego Caviglia Ericsson Via A. Negrone 1/A 16153 Genoa Italy - Phone: +39 010 600 3736 Email: diego.caviglia@(marconi.com, ericsson.com) Anders Gavler Acreo AB Electrum 236 SE - 164 40 Kista Sweden - Email: Anders.Gavler@acreo.se Jonas Martensson Acreo AB Electrum 236 SE - 164 40 Kista, Sweden - Email: Jonas.Martensson@acreo.se Itaru Nishioka NEC Corp. 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 Japan - Phone: +81 44 396 3287 Email: i-nishioka@cb.jp.nec.com + Cyril Margaria + Nokia Siemens Networks + St Martin Strasse 76 + Munich, 81541 + Germany + Phone: +49 89 5159 16934 + Email: cyril.margaria@nsn.com + Authors' Addresses Greg M. Bernstein (ed.) Grotto Networking Fremont California, USA Phone: (510) 573-2237 Email: gregb@grotto-networking.com - Young Lee (ed.) Huawei Technologies 1700 Alma Drive, Suite 100 Plano, TX 75075 USA Phone: (972) 509-5599 (x2240) Email: ylee@huawei.com Dan Li @@ -1379,34 +1404,34 @@ claimed to pertain to the implementation or use of the technology described in any IETF Document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Copies of Intellectual Property disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or - users of this specification can be obtained from the IETF on-line IPR - repository at http://www.ietf.org/ipr + users of this specification can be obtained from the IETF on-line + IPR repository at http://www.ietf.org/ipr The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement any standard or specification contained in an IETF Document. Please address the information to the IETF at ietf-ipr@ietf.org. Disclaimer of Validity - All IETF Documents and the information contained therein are provided - on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE - REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE - IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL + All IETF Documents and the information contained therein are + provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION + HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, + THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Acknowledgment Funding for the RFC Editor function is currently provided by the Internet Society.