draft-ietf-ccamp-rwa-wson-encode-03.txt   draft-ietf-ccamp-rwa-wson-encode-04.txt 
Network Working Group G. Bernstein Network Working Group G. Bernstein
Internet Draft Grotto Networking Internet Draft Grotto Networking
Intended status: Standards Track Y. Lee Intended status: Standards Track Y. Lee
Expires: April 2010 D. Li Expires: August 2010 D. Li
Huawei Huawei
W. Imajuku W. Imajuku
NTT NTT
October 8, 2009 February 18, 2010
Routing and Wavelength Assignment Information Encoding for Routing and Wavelength Assignment Information Encoding for
Wavelength Switched Optical Networks Wavelength Switched Optical Networks
draft-ietf-ccamp-rwa-wson-encode-03.txt draft-ietf-ccamp-rwa-wson-encode-04.txt
Status of this Memo Status of this Memo
This Internet-Draft is submitted to IETF in full conformance with the This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79. provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet- other groups may also distribute working documents as Internet-
Drafts. Drafts.
skipping to change at page 1, line 38 skipping to change at page 1, line 38
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html http://www.ietf.org/shadow.html
This Internet-Draft will expire on April 8, 2007. This Internet-Draft will expire on August 18, 2010.
Copyright Notice Copyright Notice
Copyright (c) 2009 IETF Trust and the persons identified as the Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of Provisions Relating to IETF Documents
publication of this document (http://trustee.ietf.org/license-info). (http://trustee.ietf.org/license-info) in effect on the date of
Please review these documents carefully, as they describe your rights publication of this document. Please review these documents
and restrictions with respect to this document. carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Abstract Abstract
A wavelength switched optical network (WSON) requires that certain A wavelength switched optical network (WSON) requires that certain
key information elements are made available to facilitate path key information elements are made available to facilitate path
computation and the establishment of label switching paths (LSPs). computation and the establishment of label switching paths (LSPs).
The information model described in "Routing and Wavelength Assignment The information model described in "Routing and Wavelength Assignment
Information for Wavelength Switched Optical Networks" shows what Information for Wavelength Switched Optical Networks" shows what
information is required at specific points in the WSON. information is required at specific points in the WSON. Part of the
WSON information model contains aspects that may be of general
The information may be used in Generalized Multiprotocol Label applicability to other technologies, while other parts are fairly
Switching (GMPLS) signaling protocols, and may be distributed by specific to WSONs.
GMPLS routing protocols. Other distribution mechanisms (for example,
XML-based protocols) may also be used.
This document provides efficient, protocol-agnostic encodings for the This document provides efficient, protocol-agnostic encodings for the
information elements necessary to operate a WSON. It is intended that WSON specific information elements. It is intended that protocol-
protocol-specific documents will reference this memo to describe how specific documents will reference this memo to describe how
information is carried for specific uses. information is carried for specific uses. Such encodings can be used
to extend GMPLS signaling and routing protocols. In addition these
encodings could be used by other mechanisms to convey this same
information to a path computation element (PCE).
Conventions used in this document Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [RFC2119]. document are to be interpreted as described in RFC-2119 [RFC2119].
Table of Contents Table of Contents
1. Introduction...................................................3 1. Introduction...................................................3
1.1. Revision History..........................................4 1.1. Revision History..........................................4
1.1.1. Changes from 00 draft................................4 1.1.1. Changes from 00 draft................................4
1.1.2. Changes from 01 draft................................4 1.1.2. Changes from 01 draft................................4
1.1.3. Changes from 02 draft................................4 1.1.3. Changes from 02 draft................................5
1.1.4. Changes from 03 draft................................5
2. Terminology....................................................5 2. Terminology....................................................5
3. Common Field Encoding..........................................5 3. WSON Encoding Usage Recommendations............................6
3.1. Link Set Field............................................5 3.1. WSON Node TLV.............................................6
3.2. Wavelength Information Encoding...........................7 3.2. WSON Dynamic Node TLV.....................................6
3.3. Wavelength Set Field......................................8 4. Resource Accessibility/Availability............................6
3.3.1. Inclusive/Exclusive Wavelength Lists.................9 4.1. Resource Block Accessibility Sub-TLV......................8
3.3.2. Inclusive/Exclusive Wavelength Ranges................9 4.2. Resource Wavelength Constraints Sub-TLV..................10
3.3.3. Bitmap Wavelength Set...............................10 4.3. Resource Block Pool State Sub-TLV........................10
4. Wavelength and Connectivity sub-TLV Encodings.................11 5. Resource Properties Encoding..................................12
4.1. Available Wavelengths Sub-TLV............................11 5.1. Resource Block Information Sub-TLV.......................12
4.2. Shared Backup Wavelengths Sub-TLV........................11 5.2. Input Modulation Format List Sub-Sub-TLV.................13
4.3. Connectivity Matrix Sub-TLV..............................11 5.2.1. Modulation Format Field.............................13
4.4. Port Wavelength Restriction sub-TLV......................13 5.3. Input FEC Type List Sub-Sub-TLV..........................15
4.4.1. SIMPLE_WAVELENGTH...................................14 5.3.1. FEC Type Field......................................16
4.4.2. CHANNEL_COUNT.......................................14 5.4. Input Bit Range List Sub-Sub-TLV.........................18
4.4.3. WAVEBAND1...........................................14 5.4.1. Bit Range Field.....................................18
4.4.4. SIMPLE_WAVELENGTH & CHANNEL_COUNT...................15 5.5. Input Client Signal List Sub-Sub-TLV.....................19
5. Wavelength Converter Pool Encoding............................15 5.6. Processing Capability List Sub-Sub-TLV...................20
5.1. Wavelength Converter Set Field...........................16 5.6.1. Processing Capabilities Field.......................20
5.2. Wavelength Converter Accessibility Sub-TLV...............17 5.7. Output Modulation Format List Sub-Sub-TLV................22
5.3. Wavelength Conversion Range Sub-TLV......................18 5.8. Output FEC Type List Sub-Sub-TLV.........................22
5.4. Wavelength Converter Usage State Sub-TLV.................19 6. Security Considerations.......................................22
6. WSON Encoding Usage Recommendations...........................20 7. IANA Considerations...........................................23
6.1. WSON Node TLV............................................20 8. Acknowledgments...............................................23
6.2. WSON Dynamic Node TLV....................................20 APPENDIX A: Encoding Examples....................................24
6.3. WSON Link TLV............................................21 A.1. Wavelength Converter Accessibility Sub-TLV...............24
6.4. WSON Dynamic Link TLV....................................21 A.2. Wavelength Conversion Range Sub-TLV......................25
7. Security Considerations.......................................21 A.3. An OEO Switch with DWDM Optics...........................26
8. IANA Considerations...........................................21 9. References....................................................29
9. Acknowledgments...............................................21 9.1. Normative References.....................................29
APPENDIX A: Encoding Examples....................................22 9.2. Informative References...................................29
A.1. Link Set Field...........................................22 10. Contributors.................................................31
A.2. Wavelength Set Field.....................................22 Authors' Addresses...............................................31
A.3. Connectivity Matrix Sub-TLV..............................23 Intellectual Property Statement..................................32
A.4. Connectivity Matrix with Bi-directional Symmetry.........26 Disclaimer of Validity...........................................33
A.5. Wavelength Converter Accessibility Sub-TLV...............28
A.6. Wavelength Conversion Range Sub-TLV......................30
10. References...................................................32
10.1. Normative References....................................32
10.2. Informative References..................................32
11. Contributors.................................................34
Authors' Addresses...............................................34
Intellectual Property Statement..................................35
Disclaimer of Validity...........................................36
1. Introduction 1. Introduction
A Wavelength Switched Optical Network (WSON) is a Wavelength Division A Wavelength Switched Optical Network (WSON) is a Wavelength Division
Multiplexing (WDM) optical network in which switching is performed Multiplexing (WDM) optical network in which switching is performed
selectively based on the center wavelength of an optical signal. selectively based on the center wavelength of an optical signal.
[WSON-Frame] describes a framework for Generalized Multiprotocol [WSON-Frame] describes a framework for Generalized Multiprotocol
Label Switching (GMPLS) and Path Computation Element (PCE) control of Label Switching (GMPLS) and Path Computation Element (PCE) control of
a WSON. Based on this framework, [WSON-Info] describes an information a WSON. Based on this framework, [WSON-Info] describes an information
skipping to change at page 4, line 19 skipping to change at page 4, line 18
This document provides efficient encodings of information needed by This document provides efficient encodings of information needed by
the routing and wavelength assignment (RWA) process in a WSON. Such the routing and wavelength assignment (RWA) process in a WSON. Such
encodings can be used to extend GMPLS signaling and routing encodings can be used to extend GMPLS signaling and routing
protocols. In addition these encodings could be used by other protocols. In addition these encodings could be used by other
mechanisms to convey this same information to a path computation mechanisms to convey this same information to a path computation
element (PCE). Note that since these encodings are relatively element (PCE). Note that since these encodings are relatively
efficient they can provide more accurate analysis of the control efficient they can provide more accurate analysis of the control
plane communications/processing load for WSONs looking to utilize a plane communications/processing load for WSONs looking to utilize a
GMPLS control plane. GMPLS control plane.
Note that encodings of information needed by the routing and label
assignment process applicable to general networks beyond WSON are
addressed in a separate document [Gen-Encode].
1.1. Revision History 1.1. Revision History
1.1.1. Changes from 00 draft 1.1.1. Changes from 00 draft
Edits to make consistent with update to [Otani], i.e., removal of Edits to make consistent with update to [Otani], i.e., removal of
sign bit. sign bit.
Clarification of TBD on connection matrix type and possibly Clarification of TBD on connection matrix type and possibly
numbering. numbering.
skipping to change at page 4, line 48 skipping to change at page 5, line 8
The encoding examples have been moved to an appendix. Classified and The encoding examples have been moved to an appendix. Classified and
corrected information elements as either reusable fields or sub-TLVs. corrected information elements as either reusable fields or sub-TLVs.
Updated Port Wavelength Restriction sub-TLV. Added available Updated Port Wavelength Restriction sub-TLV. Added available
wavelength and shared backup wavelength sub-TLVs. Changed the title wavelength and shared backup wavelength sub-TLVs. Changed the title
and scope of section 6 to recommendations since the higher level TLVs and scope of section 6 to recommendations since the higher level TLVs
that this encoding will be used in is somewhat protocol specific. that this encoding will be used in is somewhat protocol specific.
1.1.3. Changes from 02 draft 1.1.3. Changes from 02 draft
Removed inconsistent text concerning link local identifiers and the Removed inconsistent text concerning link local identifiers and the
link set field in section 3.1. link set field.
Added E bit to the Wavelength Converter Set Field. Added E bit to the Wavelength Converter Set Field.
Added bidirectional connectivity matrix example. Added simple link Added bidirectional connectivity matrix example. Added simple link
set example. Edited examples for consistency. set example. Edited examples for consistency.
1.1.4. Changes from 03 draft
Removed encodings for general concepts to [Gen-Encode].
Added in WSON signal compatibility and processing capability
information encoding.
2. Terminology 2. Terminology
CWDM: Coarse Wavelength Division Multiplexing. CWDM: Coarse Wavelength Division Multiplexing.
DWDM: Dense Wavelength Division Multiplexing. DWDM: Dense Wavelength Division Multiplexing.
FOADM: Fixed Optical Add/Drop Multiplexer. FOADM: Fixed Optical Add/Drop Multiplexer.
ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port
count wavelength selective switching element featuring ingress and count wavelength selective switching element featuring ingress and
skipping to change at page 5, line 36 skipping to change at page 6, line 5
"equivalent" content centered at a different wavelength. Wavelength "equivalent" content centered at a different wavelength. Wavelength
conversion can be implemented via an optical-electronic-optical (OEO) conversion can be implemented via an optical-electronic-optical (OEO)
process or via a strictly optical process. process or via a strictly optical process.
WDM: Wavelength Division Multiplexing. WDM: Wavelength Division Multiplexing.
Wavelength Switched Optical Network (WSON): A WDM based optical Wavelength Switched Optical Network (WSON): A WDM based optical
network in which switching is performed selectively based on the network in which switching is performed selectively based on the
center wavelength of an optical signal. center wavelength of an optical signal.
3. Common Field Encoding 3. WSON Encoding Usage Recommendations
In encoding WSON information both sets of links and sets of In this section we give recommendations of typical usage of the sub-
wavelengths frequently arise. In the following we specify the TLVs and composite TLVs which are based on the high level information
encoding of these repeatedly used fields. bundles of [WSON-Info].
3.1. Link Set Field 3.1. WSON Node TLV
We will frequently need to describe properties of groups of links. To The WSON Node TLV would consist of the following list of sub-TLVs:
do so efficiently we can make use of a link set concept similar to
the label set concept of [RFC3471]. The information carried in a Link <Node_Info> ::= <Node_ID>[Other GMPLS sub-TLVs]
Set is defined by: [<ResourcePool>][<RBPoolState>]
Where
<ResourcePool> ::= <ResourceBlockInfo>...
[<ResourceBlockAccessibility>...] [<ResourceWaveConstraints>...]
The encoding of structure and properties of a general resource pool
utilizes a resource block info sub-TLV (<ResourceBlockInfo> in
section 5. ), an accessibility sub-TLV (<ResourceBlockAccessibility>
in section 4.1. ), and a resource pool wavelength constraint sub-TLV
(<ResourceWaveConstraints> in section 4.2. ).
3.2. WSON Dynamic Node TLV
If the protocol supports the separation of dynamic information from
relatively static information then the wavelength converter pool
state can be separated from the general Node TLV into a dynamic Node
TLV as follows.
<NodeInfoDynamic> ::= <NodeID> [<RBPoolState>]
Where the resource pool state sub-TLV <RBPoolState> is defined in
section 4.3. Note that currently the only dynamic information modeled
with a node is associated with the status of the wavelength converter
pool.
4. Resource Accessibility/Availability
In this section we define the sub-TLVs for dealing with accessibility
and availability of resource blocks. These in include the following
ResourceBlockAccessibility, ResourceWaveConstraints, and RBPoolState
sub-TLVs. All these sub-TLVs are concerned with sets of resources.
In a WSON node that includes resource blocks (RB) we will want to
denote subsets these blocks to efficiently describe common properties
the blocks and to describe the structure, if non-trivial, of the
resource pool. The RB Set field is defined in a similar manner to the
label set concept of [RFC3471].
The information carried in a RB set field is defined by:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action |Dir| Format | Length | | Action |E|C| Reserved | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Identifier 1 | | RB Identifier 1 | RB Identifier 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : : : :
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Identifier N | | RB Identifier n-1 | RB Identifier n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Action: 8 bits Action: 8 bits
0 - Inclusive List 0 - Inclusive List
Indicates that one or more link identifiers are included in the Link Indicates that the TLV contains one or more RB elements that are
Set. Each identifies a separate link that is part of the set. included in the list.
1 - Inclusive Range
Indicates that the Link Set defines a range of links. It contains
two link identifiers. The first identifiers indicates the start of
the range (inclusive). The second identifiers indicates the end of
the range (inclusive). All links with numeric values between the
bounds are considered to be part of the set. A value of zero in
either position indicates that there is no bound on the corresponding
portion of the range. Note that the Action field can be set to
0x02(Inclusive Range) only when unnumbered link identifier is used.
Dir: Directionality of the Link Set (2 bits)
0 -- bidirectional
1 -- ingress
2 -- egress
In optical networks we think in terms of unidirectional as well as
bidirectional links. For example, wavelength restrictions or
connectivity may be different for an ingress port, than for its
"companion" egress port if one exists. Note that "interfaces" such as
those discussed in the Interfaces MIB [RFC2863] are assumed to be
bidirectional. This also applies to the links advertised in various
link state routing protocols.
Format: The format of the link identifier (6 bits) 2 - Inclusive Range
0 -- Link Local Identifier Indicates that the TLV contains a range of RBs. The object/TLV
contains two WC elements. The first element indicates the start of
the range. The second element indicates the end of the range. A value
of zero indicates that there is no bound on the corresponding portion
of the range.
Indicates that the links in the Link Set are identified by link local E (Even bit): Set to 0 denotes an odd number of RB identifiers in
identifiers. All link local identifiers are supplied in the context the list (last entry zero pad); Set to 1 denotes an even number of RB
of the advertising node. identifiers in the list (no zero padding).
1 -- Local Interface IPv4 Address C (Connectivity bit): Set to 0 to denote fixed (possibly multi-
cast) connectivity; Set to 1 to denote potential (switched)
connectivity. Used in resource pool accessibility sub-TLV. Ignored
elsewhere.
2 -- Local Interface IPv6 Address Reserved: 6 bits
Indicates that the links in the Link Set are identified by Local This field is reserved. It MUST be set to zero on transmission and
Interface IP Address. All Local Interface IP Address are supplied in MUST be ignored on receipt.
the context of the advertising node.
Others TBD. Length: 16 bits
Note that all link identifiers in the same list must be of the same The total length of this field in bytes.
type.
Length: 16 bits RB Identifier:
This field indicates the total length in bytes of the Link Set field. The RB identifier represents the ID of the resource block which is a
16 bit integer.
Link Identifier: length is dependent on the link format 4.1. Resource Block Accessibility Sub-TLV
The link identifier represents the port which is being described This sub-TLV describes the structure of the resource pool in relation
either for connectivity or wavelength restrictions. This can be the to the switching device. In particular it indicates the ability of an
link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS ingress port to reach a resource block and of a resource block to
OSPF routing, and [RFC5307] IS-IS GMPLS routing. The use of the link reach a particular egress port. This is the PoolIngressMatrix and
local identifier format can result in more compact WSON encodings PoolEgressMatrix of [WSON-Info].
when the assignments are done in a reasonable fashion.
3.2. Wavelength Information Encoding The resource block accessibility sub-TLV is defined by:
This document makes frequent use of the lambda label format defined 0 1 2 3
in [Otani] shown below strictly for reference purposes: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Connectivity | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ingress Link Set Field A #1 |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field A #1 |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Link set and RB set pairs as needed to |
: specify PoolIngressMatrix :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress Link Set Field B #1 |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set B Field #1 (for egress connectivity) |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Link Set and RB set pairs as needed to |
: specify PoolEgressMatrix :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Where
Grid is used to indicate which ITU-T grid specification is being Connectivity indicates how the ingress/egress ports connect to the
used. resource blocks.
C.S. = Channel spacing used in a DWDM system, i.e., with an ITU-T
G.694.1 grid.
n = Used to specify the frequency as 193.1THz +/- n*(channel spacing)
and n is a two's complement integer that takes either a negative,
zero or a positive value.
3.3. Wavelength Set Field
Wavelength sets come up frequently in WSONs to describe the range of 0 -- the device is fixed (e.g. a connected port must go through
a laser transmitter, the wavelength restrictions on ROADM ports, or the resource block)
the availability of wavelengths on a DWDM link. The general format
for a wavelength set is given below. This format uses the Action
concept from [RFC3471] with an additional Action to define a "bit
map" type of label set. Note that the second 32 bit field is a lambda
label in the previously defined format. This provides important
information on the WDM grid type and channel spacing that will be
used in the compact encodings listed.
0 1 2 3 1 -- the device is switched(e.g., a port can be configured to
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 go through a resource but isn't required )
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action| Num Wavelengths | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional fields as necessary per action |
|
Action: The Link Set Field is defined in [Gen-Encode].
0 - Inclusive List Note that the direction parameter within the Link Set Field is used
to indicate whether the link set is an ingress or egress link set,
and the bidirectional value for this parameter is not permitted in
this sub-TLV.
1 - Exclusive List See Appendix A.1 for an illustration of this encoding.
2 - Inclusive Range
3 - Exclusive Range 4.2. Resource Wavelength Constraints Sub-TLV
4 - Bitmap Set Resources, such as wavelength converters, etc., may have a limited
input or output wavelength ranges. Additionally, due to the structure
of the optical system not all wavelengths can necessarily reach or
leave all the resources. These properties are described by using one
or more resource wavelength restrictions sub-TLVs as defined below:
Length is the length in bytes of the entire field. 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Wavelength Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Wavelength Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.3.1. Inclusive/Exclusive Wavelength Lists RB Set Field:
In the case of the inclusive/exclusive lists the wavelength set A set of resource blocks (RBs) which have the same wavelength
format is given by: restrictions.
0 1 2 3 Input Wavelength Set Field:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 or 1 | Num Wavelengths | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| n2 | n3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| nm | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where: Indicates the wavelength input restrictions of the RBs in the
corresponding RB set.
Num Wavelengths tells us the number of wavelength in this inclusive Output Wavelength Set Field:
or exclusive list including the initial wavelength in the list. Hence
if the number of wavelengths is even then zero padding of the last
half word is required.
n2 - nm, are used to specify the frequency as 193.1THz +/- n*(channel Indicates the wavelength output restrictions of RBs in the
spacing) and is a two's complement integer. Note that the channel corresponding RB set.
spacing is given by C.S. and is the same for all frequencies on the
list.
3.3.2. Inclusive/Exclusive Wavelength Ranges 4.3. Resource Block Pool State Sub-TLV
In the case of inclusive/exclusive ranges the wavelength set format The usage state of a resource is encoded as either a list of 16 bit
is given by: integer values or a bit map indicating whether a single resource is
available or in use. This information can be relatively dynamic,
i.e., can change when a connection is established or torn down.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|2 or 3 | Num Wavelengths | Length | | Action | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency | | RB Set Field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Usage state |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case Num Wavelengths specifies the number of wavelengths in Where Action = 0 denotes a list of 16 bit integers and Action = 1
the range starting at the given wavelength and incrementing the Num denotes a bit map. In both cases the elements of the RB Set field are
Wavelengths number of channel spacing up in frequency. in a one-to-one correspondence with the values in the usage RB usage
state area.
3.3.3. Bitmap Wavelength Set 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action = 0 | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB#1 state | RB#2 state |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB#n-1 state | RB#n state or Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In the case of Action = 4, the bitmap the wavelength set format is Whether the last 16 bits is a wavelength converter (RB) state or
given by: padding is determined by the number of elements in the RB set field.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4 | Num Wavelengths | Length | | Action = 1 | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency | | RB Set Field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : :
| Bit Map Word #1 (Lowest frequency channels) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Usage state bitmap |
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Bit Map Word #N (Highest frequency channels) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Num Wavelengths in this case tells us the number of wavelengths +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
represented by the bit map. Each bit in the bit map represents a | ...... | Padding bits |
particular frequency with a value of 1/0 indicating whether the +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
frequency is in the set or not. Bit position zero represents the
lowest frequency, while each succeeding bit position represents the
next frequency a channel spacing (C.S.) above the previous.
The size of the bit map is Num Wavelengths bits, but the bit map is RB Usage state: Variable Length but must be a multiple of 4 byes.
padded out to a full multiple of 32 bits so that the TLV is a
multiple of four bytes. Bits that do not represent wavelengths (i.e.,
those in positions (Num Wavelengths) and beyond SHOULD be set to zero
and MUST be ignored.
4. Wavelength and Connectivity sub-TLV Encodings Each bit indicates the usage status of one RB with 0 indicating the
RB is available and 1 indicating the RB is in used. The sequence of
the bit map is ordered according to the RB Set field with this sub-
TLV.
A type-length-value (TLV) encoding of the high level WSON information Padding bits: Variable Length
model [WSON-Info] is given in the following sections. This encoding
is designed to be suitable for use in the GMPLS routing protocols
OSPF [RFC4203] and IS-IS [RFC5307] and in the PCE protocol PCEP
[PCEP]. Note that the information distributed in [RFC4203] and
[RFC5307] is arranged via the nesting of sub-TLVs within TLVs and
this document makes use of such constructs.
4.1. Available Wavelengths Sub-TLV 5. Resource Properties Encoding
To indicate the wavelengths available for use on a link the Available Within a WSON network element (NE) there may be resources with signal
Wavelengths sub-TLV consists of a single variable length wavelength compatibility constraints. Such resources typically come in "blocks"
set field as follows: which contain a group on identical and indistinguishable individual
resources. These resource blocks may consist of regenerators,
wavelength converters, etc... Such resource blocks may also
constitute the network element as a whole as in the case of an
electro optical switch. In this section we focus on the signal
compatibility and processing properties of such a resource block,
i.e., <ResourceBlockInfo> of section 3.1. the accessibility aspects
of a resource in a shared pool were encoded in the previous section.
0 1 2 3 The fundamental properties of a resource block, such as a regenerator
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 or wavelength converter, are:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Wavelength Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
4.2. Shared Backup Wavelengths Sub-TLV (a)Input constraints (modulation, FEC, bit rate, GPID)
To indicate the wavelengths available for shared backup use on a link (b)Processing capabilities (number of resources in a block,
the Shared Backup Wavelengths sub-TLV consists of a single variable regeneration, performance monitoring, vendor specific)
length wavelength set field as follows:
0 1 2 3 (c)Output Constraints (modulation, FEC)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Wavelength Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
4.3. Connectivity Matrix Sub-TLV 5.1. Resource Block Information Sub-TLV
The switch and fixed connectivity matrices of [WSON-Info] can be Resource Block descriptor sub-TLVs are used to convey relatively
compactly represented in terms of a minimal list of ingress and static information about individual resource blocks including the
egress port set pairs that have mutual connectivity. As described in resource block properties of section 3. and the number of resources
[Switch] such a minimal list representation leads naturally to a in a block.
graph representation for path computation purposes that involves the
fewest additional nodes and links.
A TLV encoding of this list of link set pairs is: This sub-TLV has the following format:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Connectivity | MatrixID | Reserved | | RB Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Set A #1 | | Input Modulation Type List Sub-Sub-TLV (opt) |
: : : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Set B #1 : | Input FEC Type List Sub-Sub-TLV (opt) |
: : : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Link set pairs as needed | | Input Client Signal Type Sub-TLV (opt) |
: to specify connectivity : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Bit Rate Range List Sub-Sub-TLV (opt) |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Processing Capabilities List Sub-Sub-TLV (opt) |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Modulation Type List Sub-Sub-TLV (opt) |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output FEC Type List Sub-Sub-TLV (opt) |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where 5.2. Input Modulation Format List Sub-Sub-TLV
Connectivity is the device type.
0 -- the device is fixed
1 -- the device is switched(e.g., ROADM/OXC) This sub-TLV contains a list of acceptable input modulation formats.
MatrixID represents the ID of the connectivity matrix and is an 8 bit Type := Input Modulation Format List
integer. The value of 0xFF is reserved for use with port wavelength
constraints and should not be used to identify a connectivity matrix.
There are two permitted combinations for the link set field parameter Value:= A list of Modulation Format Fields
"dir" for Link Set A and B pairs:
o Link Set A dir=ingress, Link Set B dir=egress 5.2.1. Modulation Format Field
In this case any signal on the ingress links in set A can be Two different types of modulation format fields are defined: a
potentially switched out of an egress link in set B. standard modulation field and a vendor specific modulation field.
Both start with the same 32 bit header shown below.
o Link Set A dir=bidirectional, Link Set B dir=bidirectional 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S|I| Modulation ID | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case any ingress signal on the links in set A can Where S bit set to 1 indicates a standardized modulation format and S
potentially egress on a link in set B, and any ingress signal on bit set to 0 indicates a vendor specific modulation format. The
the links in set B can potentially egress on a link in set A. length is the length in bytes of the entire modulation type field.
See Appendix A for examples of both types of encodings. Where I bit set to 1 indicates it is an input modulation constraint
and I bit set to 0 indicates it is an output modulation constraint.
4.4. Port Wavelength Restriction sub-TLV Note that if an output modulation is not specified then it is implied
that it is the same as the input modulation. In such case, no
modulation conversion is performed.
The port wavelength restriction of [WSON-Info] can be encoded as a The format for the standardized type for the input modulation is
sub-TLV as follows. More than one of these sub-TLVs may be needed to given by:
fully specify a complex port constraint. When more than one of these
sub-TLVs are present the resulting restriction is the intersection of
the restrictions expressed in each sub-TLV. To indicate that a
restriction applies to the port in general and not to a specific
connectivity matrix use the reserved value of 0xFF for the MatrixID.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RestrictionType | Reserved/Parameter | |1|1| Modulation ID | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Restriction Parameters per RestrictionType | | Possible additional modulation parameters depending upon |
: : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: the modulation ID :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where: Modulation ID (S bit = 1); Input modulation (I bit = 1)
MatrixID: either is the value in the corresponding Connectivity Takes on the following currently defined values:
Matrix sub-TLV or takes the value OxFF to indicate the restriction
applies to the port regardless of any Connectivity Matrix.
RestrictionType can take the following values and meanings: 0 Reserved
0: SIMPLE_WAVELENGTH (Simple wavelength selective restriction) 1 optical tributary signal class NRZ 1.25G
1: CHANNEL_COUNT (Channel count restriction) 2 optical tributary signal class NRZ 2.5G
2: WAVEBAND1 (Waveband device with a tunable center frequency 3 optical tributary signal class NRZ 10G
and passband)
3: SIMPLE_WAVELENGTH & CHANNEL_COUNT (Combination of 4 optical tributary signal class NRZ 40G
SIMPLE_WAVELENGTH and CHANNEL_COUNT restriction. The 5 optical tributary signal class RZ 40G
accompanying wavelength set and channel count indicate
wavelength permitted on the port and the maximum number of
channels that can be simultaneously used on the port)
4.4.1. SIMPLE_WAVELENGTH Note that future modulation types may require additional parameters
in their characterization.
In the case of the SIMPLE_WAVELENGTH the GeneralPortRestrictions (or The format for vendor specific modulation field (for input
MatrixSpecificRestrictions) format is given by: constraint) is given by:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 0 | Reserved | |0|1| Vendor Modulation ID | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Wavelength Set Field | | Enterprise Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Any vendor specific additional modulation parameters :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case the accompanying wavelength set indicates the Vendor Modulation ID
wavelengths permitted on the port.
4.4.2. CHANNEL_COUNT This is a vendor assigned identifier for the modulation type.
In the case of the CHANNEL_COUNT the format is given by: Enterprise Number
0 1 2 3 A unique identifier of an organization encoded as a 32-bit integer.
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Enterprise Numbers are assigned by IANA and managed through an IANA
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ registry [RFC2578].
| MatrixID | RstType = 1 | MaxNumChannels |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case the accompanying MaxNumChannels indicates the maximum Vendor Specific Additional parameters
number of channels that can be simultaneously used on the
port/matrix.
4.4.3. WAVEBAND1 There can be potentially additional parameters characterizing the
vendor specific modulation.
In the case of the WAVEBAND1 the GeneralPortRestrictions (or 5.3. Input FEC Type List Sub-Sub-TLV
MatrixSpecificRestrictions) format is given by:
This sub-TLV contains a list of acceptable FEC types.
Type := Input FEC Type field List
Value:= A list of FEC type Fields
5.3.1. FEC Type Field
The FEC type Field may consist of two different formats of fields: a
standard FEC field or a vendor specific FEC field. Both start with
the same 32 bit header shown below.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 2 | MaxWaveBandWidth | |S|I| FEC ID | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Wavelength Set | | Possible additional FEC parameters depending upon |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: the FEC ID :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case the accompanying MaxWaveBandWidth indicates the maximum Where S bit set to 1 indicates a standardized FEC format and S bit
width of the waveband in terms of the channels spacing given in the set to 0 indicates a vendor specific FEC format. The length is the
wavelength set. The corresponding wavelength set is used to indicate length in bytes of the entire FEC type field.
the overall tuning range. Specific center frequency tuning
information can be obtained from dynamic channel in use information.
It is assumed that both center frequency and bandwidth (Q) tuning can
be done without causing faults in existing signals.
4.4.4. SIMPLE_WAVELENGTH & CHANNEL_COUNT Where I bit set to 1 indicates it is an input FEC constraint and I
bit set to 0 indicates it is an output FEC constraint.
In the case of the SIMPLE_WAVELENGTH & CHANNEL_COUNT the format is Note that if an output FEC is not specified then it is implied that
given by: it is the same as the input FEC. In such case, no FEC conversion is
performed.
The length is the length in bytes of the entire FEC type field.
The format for input standard FEC field is given by:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixInfo | RstType = 3 | MaxNumChannels | |1|1| FEC ID | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Wavelength Set Field | | Possible additional FEC parameters depending upon |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: the FEC ID :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Takes on the following currently defined values for the standard
FEC ID:
In this case the accompanying wavelength set and MaxNumChannels 0 Reserved
indicate wavelength permitted on the port and the maximum number of
channels that can be simultaneously used on the port.
5. Wavelength Converter Pool Encoding
The encoding of structure and properties of a general wavelength
converter pool utilizes a converter accessibility sub-TLV, a
wavelength converter range sub-TLV, and a wavelength converter state
sub-TLV. All these sub-TLVs make use of the wavelength converter set
field.
5.1. Wavelength Converter Set Field 1 G.709 RS FEC
A WSON node may include a set of wavelength converters (WC) and such 2 G.709V compliant Ultra FEC
information frequently is used in describing the wavelength converter
pool and its properties. The WC Set field is defined in a similar
manner to the label set concept of [RFC3471].
The information carried in a WC set field is defined by: 3 G.975.1 Concatenated FEC
(RS(255,239)/CSOC(n0/k0=7/6,J=8))
0 1 2 3 4 G.975.1 Concatenated FEC (BCH(3860,3824)/BCH(2040,1930))
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action |E| Reserved | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Identifier 1 | WC Identifier 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Identifier n-1 | WC Identifier n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Action: 8 bits 5 G.975.1 Concatenated FEC (RS(1023,1007)/BCH(2407,1952))
0 - Inclusive List 6 G.975.1 Concatenated FEC (RS(1901,1855)/Extended Hamming
Product Code (512,502)X(510,500))
Indicates that the TLV contains one or more WC elements that are 7 G.975.1 LDPC Code
included in the list.
2 - Inclusive Range 8 G.975.1 Concatenated FEC (Two orthogonally concatenated
BCH codes)
Indicates that the TLV contains a range of WCs. The object/TLV 9 G.975.1 RS(2720,2550)
contains two WC elements. The first element indicates the start of
the range. The second element indicates the end of the range. A value
of zero indicates that there is no bound on the corresponding portion
of the range.
E (Even bit): Set to 0 denotes an odd number of WC identifiers in 10 G.975.1 Concatenated FEC (Two interleaved extended BCH
the list (last entry zero pad); Set to 1 denotes an even number of WC (1020,988) codes)
identifiers in the list (no zero padding).
Reserved: 7 bits Where RS stands for Reed-Solomon and BCH for Bose-Chaudhuri-
Hocquengham.
This field is reserved. It MUST be set to zero on transmission and The format for input vendor-specific FEC field is given by:
MUST be ignored on receipt.
Length: 16 bits 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0|1| Vendor FEC ID | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Enterprise Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Any vendor specific additional FEC parameters :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The total length of this field in bytes. Vendor FEC ID
WC Identifier: This is a vendor assigned identifier for the FEC type.
The WC identifier represents the ID of the wavelength convertor which Enterprise Number
is a 16 bit integer.
5.2. Wavelength Converter Accessibility Sub-TLV A unique identifier of an organization encoded as a 32-bit integer.
Enterprise Numbers are assigned by IANA and managed through an IANA
registry [RFC2578].
This sub-TLV describes the structure of the wavelength converter pool Vendor Specific Additional FEC parameters
in relation to the switching device. In particular it gives the
ability of an ingress port to reach a wavelength converter and of a
wavelength converter to reach a particular egress port. This is the
PoolIngressMatrix and PoolEgressMatrix of [WSON-Info].
The wavelength converter accessibility sub-TLV is defined by: There can be potentially additional parameters characterizing the
vendor specific FEC.
0 1 2 3 5.4. Input Bit Range List Sub-Sub-TLV
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ingress Link Set Field A #1 |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Set Field A #1 |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Link set and WC set pairs as needed to |
: specify PoolIngressMatrix :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Set B Field #1 (for egress connectivity) |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress link Set Field B #1 |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional WC set and egress link set pairs |
: as needed to specify PoolEgressMatrix :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note that the direction parameter within the Link Set Field is used This sub-TLV contains a list of acceptable input bit rate ranges.
to indicate whether the link set is an ingress or egress link set,
and the bidirectional value for this parameter is not permitted in
this sub-TLV.
5.3. Wavelength Conversion Range Sub-TLV Type := Input Bit Range List
Wavelength converters may have a limited input or output range. Value:= A list of Bit Range Fields
Additionally, due to the structure of the optical system not all
wavelengths can necessarily reach or leave all the converters. These
properties are described by using one or more wavelength conversion
sub-TLVs as defined below:
0 1 2 3 5.4.1. Bit Range Field
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Wavelength Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Wavelength Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
WC Set Field: The bit rate range list sub-TLV makes use of the following bit rate
range field:
A set of wavelength converters (WCs) which have the same conversion 0 1 2 3
range. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Starting Bit Rate |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ending Bit Rate |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Input Wavelength Set Field: The starting and ending bit rates are given as 32 bit IEEE floating
point numbers in bits per second. Note that the starting bit rate is
less than or equal to the ending bit rate.
Indicates the wavelength input range of the WCs in the corresponding The bit rate range list sub-TLV is then given by:
WC set.
Output Wavelength Set Field: 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+ Bit Range Field #1 +-+-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+ Bit Range Field #M +-+-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Indicates the wavelength output range of WCs in the corresponding WC 5.5. Input Client Signal List Sub-Sub-TLV
set.
5.4. Wavelength Converter Usage State Sub-TLV This sub-TLV contains a list of acceptable input client signal types.
The usage state of a wavelength converter is encoded as a bit map Type := Input Client Signal List
indicating whether the converter is available or in use. This
information can be relatively dynamic, i.e., can change when a
connection is established or torn down. This bit map is in
correspondence with a wavelength converter set as follows:
0 1 2 3 Value:= A list of GPIDs
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Usage state bitmap |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...... | Padding bits |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
WC Usage state: Variable Length but must be a multiple of 4 byes. The acceptable client signal list sub-TLV is a list of Generalized
Protocol Identifiers (GPIDs). GPIDs are assigned by IANA and many are
defined in [RFC3471] and [RFC4328].
Each bit indicates the usage status of one WC with 0 indicating the 0 1 2 3
WC is available and 1 indicating the WC is in used. The sequence of 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
the bit map is ordered according to the WC Set field with this sub- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
TLV. | Number of GPIDs | GPID #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: | :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| GPID #N | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Padding bits: Variable Length Where the number of GPIDs is an integer greater than or equal to one.
6. WSON Encoding Usage Recommendations 5.6. Processing Capability List Sub-Sub-TLV
In this section we give recommendations of typical usage of the This sub-TLV contains a list of resource block processing
previously defined sub-TLVs. Typically the sub-TLVs defined in the capabilities.
preceding sections would be incorporated into some kind of composite
TLV. The example composite TLVs in the following sections are based
on the four high level information bundles of [WSON-Info].
6.1. WSON Node TLV Type := Processing Capabilities List
The WSON Node TLV could consist of the following list of sub-TLVs: Value:= A list of Processing Capabilities Fields
<Node_Info> ::= <Node_ID>[Other GMPLS sub- The processing capability list sub-TLV is a list of WSON network
TLVs][<ConnectivityMatrix>...] element (NE) that can perform signal processing functions including:
[<WavelengthConverterPool>][<WCPoolState>]
6.2. WSON Dynamic Node TLV 1. Number of Resources within the block
If the protocol supports the separation of dynamic information from 2. Regeneration capability
relatively static information then the wavelength converter pool
state can be separated from the general Node TLV into a dynamic Node
TLV as follows.
<NodeInfoDynamic> ::= <NodeID> [<WCPoolState>] 3. Fault and performance monitoring
Note that currently the only dynamic information modeled with a node
is associated with the status of the wavelength converter pool.
6.3. WSON Link TLV 4. Vendor Specific capability
The new link related sub-TLVs could be incorporated into a composite Note that the code points for Fault and performance monitoring and
link TLV as follows: vendor specific capability are subject to further study.
<LinkInfo> ::= <LinkID> [Other GMPLS sub-TLVs] 5.6.1. Processing Capabilities Field
[<PortWavelengthRestriction>...][<AvailableWavelengths>]
[<SharedBackupWavelengths>]
6.4. WSON Dynamic Link TLV The processing capability field is then given by:
If the protocol supports the separation of dynamic information from 0 1 2 3
relatively static information then the available wavelength and 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
shared backup status can be separated from the general link TLV into +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
a TLV for dynamic link information. | Processing Cap ID | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Possible additional capability parameters depending upon |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: the processing ID :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<DynamicLinkInfo> ::= <LinkID> <AvailableWavelengths> When the processing Cap ID is "number of resources" the format is
[<SharedBackupWavelengths>] simply:
7. Security Considerations 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Processing Cap ID | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Number of resources per block |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This document defines protocol-independent encodings for WSON When the processing Cap ID is "regeneration capability", the
information and does not introduce any security issues. following additional capability parameters are provided in the sub-
TLV:
However, other documents that make use of these encodings within 0 1 2 3
protocol extensions need to consider the issues and risks associated 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
with, inspection, interception, modification, or spoofing of any of +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
this information. It is expected that any such documents will | T | C | Reserved |
describe the necessary security measures to provide adequate +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
protection.
8. IANA Considerations Where T bit indicates the type of regenerator:
TBD. Once our approach is finalized we may need identifiers for the T=0: Reserved
various TLVs and sub-TLVs.
9. Acknowledgments T=1: 1R Regenerator
This document was prepared using 2-Word-v2.0.template.dot. T=2: 2R Regenerator
APPENDIX A: Encoding Examples T=3: 3R Regenerator
A.1. Link Set Field Where C bit indicates the capability of regenerator:
Suppose that we wish to describe a set of ingress ports that are have C=0: Reserved
link local identifiers number 3 through 42. In the link set field we
set the Action = 1 to denote an inclusive range; the Dir = 1 to
denote ingress links; and, the Format = 0 to denote link local
identifiers. In particular we have:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ C=1: Fixed Regeneration Point
| Action=1 |0 1|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.2. Wavelength Set Field C=2: Selective Regeneration Point
Example: Note that when the capability of regenerator is indicated to be
Selective Regeneration Pools, regeneration pool properties such as
ingress and egress restrictions and availability need to be
specified. This encoding is to be determined in the later revision.
A 40 channel C-Band DWDM system with 100GHz spacing with lowest 5.7. Output Modulation Format List Sub-Sub-TLV
frequency 192.0THz (1561.4nm) and highest frequency 195.9THz
(1530.3nm). These frequencies correspond to n = -11, and n = 28
respectively. Now suppose the following channels are available:
Frequency (THz) n Value bit map position This sub-TLV contains a list of available output modulation formats.
--------------------------------------------------
192.0 -11 0
192.5 -6 5
193.1 0 11
193.9 8 19
194.0 9 20
195.2 21 32
195.8 27 38
With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S. Type := Output Modulation Format List
set to indicate 100GHz this lambda bit map set would then be encoded
as follows:
0 1 2 3 Value:= A list of Modulation Format Fields
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4 | Num Wavelengths = 40 | Length = 16 bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = -11 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
To encode this same set as an inclusive list we would have: 5.8. Output FEC Type List Sub-Sub-TLV
0 1 2 3 This sub-TLV contains a list of output FEC types.
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 | Num Wavelengths = 40 | Length = 20 bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = -11 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| n2 = -6 | n3 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| n4 = 8 | n5 = 9 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| n6 = 21 | n7 = 27 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.3. Connectivity Matrix Sub-TLV Type := Output FEC Type field List
Example: Value:= A list of FEC type Fields
Suppose we have a typical 2-degree 40 channel ROADM. In addition to 6. Security Considerations
its two line side ports it has 80 add and 80 drop ports. The picture
below illustrates how a typical 2-degree ROADM system that works with
bi-directional fiber pairs is a highly asymmetrical system composed
of two unidirectional ROADM subsystems.
(Tributary) Ports #3-#42 This document defines protocol-independent encodings for WSON
Ingress added to Egress dropped from information and does not introduce any security issues.
West Line Egress East Line Ingress
vvvvv ^^^^^
| |||.| | |||.|
+-----| |||.|--------| |||.|------+
| +----------------------+ |
| | | |
Egress | | Unidirectional ROADM | | Ingress
-----------------+ | | +--------------
<=====================| |===================<
-----------------+ +----------------------+ +--------------
| |
Port #1 | | Port #2
(West Line Side) | |(East Line Side)
-----------------+ +----------------------+ +--------------
>=====================| |===================>
-----------------+ | Unidirectional ROADM | +--------------
Ingress | | | | Egress
| | _ | |
| +----------------------+ |
+-----| |||.|--------| |||.|------+
| |||.| | |||.|
vvvvv ^^^^^
(Tributary) Ports #43-#82
Egress dropped from Ingress added to
West Line ingress East Line egress
Referring to the figure we see that the ingress direction of ports However, other documents that make use of these encodings within
#3-#42 (add ports) can only connect to the egress on port #1. While protocol extensions need to consider the issues and risks associated
the ingress side of port #2 (line side) can only connect to the with, inspection, interception, modification, or spoofing of any of
egress on ports #3-#42 (drop) and to the egress on port #1 (pass this information. It is expected that any such documents will
through). Similarly, the ingress direction of ports #43-#82 can only describe the necessary security measures to provide adequate
connect to the egress on port #2 (line). While the ingress direction protection.
of port #1 can only connect to the egress on ports #43-#82 (drop) or
port #2 (pass through). We can now represent this potential
connectivity matrix as follows. This representation uses only 30 32-
bit words.
0 1 2 3 7. IANA Considerations
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Conn = 1 | MatrixID | Reserved |1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: adds to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 1|0 0 0 0 0 0| Length = 12 |2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 |3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |4
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0| Length = 8 |5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |6
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to drops
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0| Length = 8 |7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |1 0|0 0 0 0 0 0| Length = 12 |9
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 |10
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |11
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0| Length = 8 |12
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |13
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0| Length = 8 |14
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: adds to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 1|0 0 0 0 0 0| Length = 12 |16
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #43 |17
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #82 |18
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0| Length = 8 |19
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |20
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to drops
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0|| Length = 8 |21
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |22
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |1 0|0 0 0 0 0 0| Length = 12 |23
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #43 |24
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #82 |25
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0| Length = 8 |26
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |27
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0| Length = 8 |28
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |30
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.4. Connectivity Matrix with Bi-directional Symmetry TBD. Once our approach is finalized we may need identifiers for the
various TLVs and sub-TLVs.
If one has the ability to renumber the ports of the previous example 8. Acknowledgments
as shown in the next figure then we can take advantage of the bi-
directional symmetry and use bi-directional encoding of the
connectivity matrix. Note that we set dir=bidirectional in the link
set fields.
(Tributary) This document was prepared using 2-Word-v2.0.template.dot.
Ports #3-42 Ports #43-82
West Line Egress East Line Ingress
vvvvv ^^^^^
| |||.| | |||.|
+-----| |||.|--------| |||.|------+
| +----------------------+ |
| | | |
Egress | | Unidirectional ROADM | | Ingress
-----------------+ | | +--------------
<=====================| |===================<
-----------------+ +----------------------+ +--------------
| |
Port #1 | | Port #2
(West Line Side) | |(East Line Side)
-----------------+ +----------------------+ +--------------
>=====================| |===================>
-----------------+ | Unidirectional ROADM | +--------------
Ingress | | | | Egress
| | _ | |
| +----------------------+ |
+-----| |||.|--------| |||.|------+
| |||.| | |||.|
vvvvv ^^^^^
Ports #3-#42 Ports #43-82
Egress dropped from Ingress added to
West Line ingress East Line egress
0 1 2 3 APPENDIX A: Encoding Examples
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Conn = 1 | MatrixID | Reserved |1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Add/Drops #3-42 to Line side #1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 0|0 0 0 0 0 0| Length = 12 |2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 |3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |4
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 0|0 0 0 0 0 0| Length = 8 |5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |6
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line #2 to add/drops #43-82
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 0|0 0 0 0 0 0| Length = 8 |7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=1 |0 0|0 0 0 0 0 0| Length = 12 |9
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #43 |10
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #82 |11
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 0|0 0 0 0 0 0| Length = 8 |12
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |13
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 0|0 0 0 0 0 0| Length = 8 |14
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.5. Wavelength Converter Accessibility Sub-TLV A.1. Wavelength Converter Accessibility Sub-TLV
Example: Example:
Figure 1 shows a wavelength converter pool architecture know as Figure 1 shows a wavelength converter pool architecture know as
"shared per fiber". In this case the ingress and egress pool matrices "shared per fiber". In this case the ingress and egress pool matrices
are simply: are simply:
+-----+ +-----+ +-----+ +-----+
| 1 1 | | 1 0 | | 1 1 | | 1 0 |
WI =| |, WE =| | WI =| |, WE =| |
skipping to change at page 30, line 7 skipping to change at page 25, line 7
| |--------------------->| e | | |--------------------->| e |
| |--------------------->| r | | |--------------------->| r |
+-----------+ +------+ +-----------+ +------+
Figure 1 An optical switch featuring a shared per fiber wavelength Figure 1 An optical switch featuring a shared per fiber wavelength
converter pool architecture. converter pool architecture.
This wavelength converter pool can be encoded as follows: This wavelength converter pool can be encoded as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Connectivity=1| Reserved |
Note: I1,I2 can connect to either WC1 or WC2 Note: I1,I2 can connect to either WC1 or WC2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0| Length = 12 | | Action=0 |0 1|0 0 0 0 0 0| Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 | | Link Local Identifier = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 | | Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1| Reserved | Length = 8 | | Action=0 |1| Reserved | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 30, line 40 skipping to change at page 25, line 42
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0| | Length = 8 | | Action=0 |0| | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC ID = #2 | zero padding | | WC ID = #2 | zero padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0| Length = 8 | | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 | | Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.6. Wavelength Conversion Range Sub-TLV A.2. Wavelength Conversion Range Sub-TLV
Example: Example:
We give an example based on figure 1 about how to represent the We give an example based on figure 1 about how to represent the
wavelength conversion range of wavelength converters. Suppose the wavelength conversion range of wavelength converters. Suppose the
wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, wavelength range of input and output of WC1 and WC2 are {L1, L2, L3,
L4}: L4}:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
skipping to change at page 32, line 5 skipping to change at page 26, line 28
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 1 | |Grid | C.S. | Reserved | n for lowest frequency = 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: wavelength output range Note: wavelength output range
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 2 | Num Wavelengths = 4 | Length = 8 | | 2 | Num Wavelengths = 4 | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 1 | |Grid | C.S. | Reserved | n for lowest frequency = 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
10. References A.3. An OEO Switch with DWDM Optics
10.1. Normative References In Figure 2 we show an electronic switch fabric surrounded by DWDM
optics. In this example the electronic fabric can can handle either
G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node we
have the potential information:
<Node_Info> ::= <Node_ID>[Other GMPLS sub-
TLVs][<ConnectivityMatrix>...] [<ResourcePool>][<RBPoolState>]
In this case there is complete port to port connectivity so the
<ConnectivityMatrix> is not required. In addition since there are
sufficient ports to handle all wavelength signals we will not need
the <RBPoolState> element.
Hence our attention will be focused on the <ResourcePool> sub-TLV:
<ResourcePool> ::=
<ResourceBlockInfo>[<ResourceBlockAccessibility>...][<ResourceWaveCon
straints>...]
/| +-----------+ +-------------+ +------+
/D+--->| +--->|Tunable Laser|-->| |
+ e+--->| | +-------------+ | C |
========>| M| | | ... | o |========>
Port I1 + u+--->| | +-------------+ | m | Port E1
\x+--->| |--->|Tunable Laser|-->| b |
\| | Electric | +-------------+ +------+
| Switch |
/| | | +-------------+ +------+
/D+--->| +--->|Tunable Laser|-->| |
+ e+--->| | +-------------+ | C |
========>| M| | | ... | o |========>
Port I2 + u+--->| | +-------------+ | m | Port E2
\x+--->| +--->|Tunable Laser|-->| b |
\| | | +-------------+ +------+
| |
/| | | +-------------+ +------+
/D+--->| |--->|Tunable Laser|-->| |
+ e+--->| | +-------------+ | C |
========>| M| | | ... | o |========>
Port I3 + u+--->| | +-------------+ | m | Port E3
\x+--->| |--->|Tunable Laser|-->| b |
\| +-----------+ +-------------+ +------+
Figure 2 An optical switch built around an electronic switching
fabric.
The resource block information will tell us about the processing
constraints of the receivers, transmitters and the electronic switch.
The resource availability information, although very simple, tells us
that all signals must traverse the electronic fabric (fixed
connectivity). The resource wavelength constraints are not needed
since there are no special wavelength constraints for the resources
that would not appear as port/wavelength constraints.
<ResourceBlockInfo>:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field |
: (only one resource block in this example) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Modulation Type List Sub-Sub-TLV |
: (The receivers can only process NRZ) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input FEC Type List Sub-Sub-TLV |
: (Only Standard SDH and G.709 FECs) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Client Signal Type Sub-TLV |
: (GPIDs for SDH and G.709) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Bit Rate Range List Sub-Sub-TLV |
: (2.5Gbps, 10Gbps) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Processing Capabilities List Sub-Sub-TLV |
: Fixed (non optional) 3R regeneration :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Modulation Type List Sub-Sub-TLV |
: NRZ :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output FEC Type List Sub-Sub-TLV |
: Standard SDH, G.709 FECs :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Since we have fixed connectivity to resource block (the electronic
switch) we get <ResourceBlockAccessibility>:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Connectivity=1|Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ingress Link Set Field A #1 |
: (All ingress links connect to resource) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field A #1 |
: (trivial set only one resource block) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress Link Set Field B #1 |
: (All egress links connect to resource) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9. References
9.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997. Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
MIB", RFC 2863, June 2000. MIB", RFC 2863, June 2000.
[RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching
(GMPLS) Signaling Functional Description", RFC 3471, (GMPLS) Signaling Functional Description", RFC 3471,
January 2003. January 2003.
skipping to change at page 32, line 30 skipping to change at page 29, line 30
applications: DWDM frequency grid", June, 2002. applications: DWDM frequency grid", June, 2002.
[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions
in Support of Generalized Multi-Protocol Label Switching in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 4202, October 2005 (GMPLS)", RFC 4202, October 2005
[RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in
Support of Generalized Multi-Protocol Label Switching Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 4203, October 2005. (GMPLS)", RFC 4203, October 2005.
10.2. Informative References 9.2. Informative References
[G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM
applications: DWDM frequency grid, June 2002. applications: DWDM frequency grid, June 2002.
[G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM
applications: CWDM wavelength grid, December 2003. applications: CWDM wavelength grid, December 2003.
[Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General
Network Element Constraint Encoding for GMPLS Controlled
Networks", work in progress: draft-ietf-ccamp-general-ext-
encode-00.txt.
[Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized [Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized
Labels for G.694 Lambda-Switching Capable Label Switching Labels for G.694 Lambda-Switching Capable Label Switching
Routers", work in progress: draft-ietf-ccamp-gmpls-g-694- Routers", work in progress: draft-ietf-ccamp-gmpls-g-694-
lambda-labels. lambda-labels.
[RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions
in Support of Generalized Multi-Protocol Label Switching in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 5307, October 2008. (GMPLS)", RFC 5307, October 2008.
[Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling
skipping to change at page 34, line 5 skipping to change at page 31, line 5
[WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and
Wavelength Assignment Information Model for Wavelength Wavelength Assignment Information Model for Wavelength
Switched Optical Networks", work in progress: draft-ietf- Switched Optical Networks", work in progress: draft-ietf-
ccamp-rwa-info, March 2009. ccamp-rwa-info, March 2009.
[PCEP] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation [PCEP] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
Element (PCE) communication Protocol (PCEP) - Version 1", Element (PCE) communication Protocol (PCEP) - Version 1",
RFC5440. RFC5440.
11. Contributors 10. Contributors
Diego Caviglia Diego Caviglia
Ericsson Ericsson
Via A. Negrone 1/A 16153 Via A. Negrone 1/A 16153
Genoa Italy Genoa Italy
Phone: +39 010 600 3736 Phone: +39 010 600 3736
Email: diego.caviglia@(marconi.com, ericsson.com) Email: diego.caviglia@(marconi.com, ericsson.com)
Anders Gavler Anders Gavler
 End of changes. 204 change blocks. 
787 lines changed or deleted 678 lines changed or added

This html diff was produced by rfcdiff 1.38. The latest version is available from http://tools.ietf.org/tools/rfcdiff/