Network Working Group                                      G. Bernstein
Internet Draft                                        Grotto Networking
Intended status: Standards Track                                 Y. Lee
Expires: September 2009 January 2010                                             D. Li
                                                                 Huawei
                                                             W. Imajuku
                                                                    NTT

                                                          March 3,

                                                          July 10, 2009

        Routing and Wavelength Assignment Information Encoding for
                   Wavelength Switched Optical Networks

                  draft-ietf-ccamp-rwa-wson-encode-01.txt

                  draft-ietf-ccamp-rwa-wson-encode-02.txt

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html

   This Internet-Draft will expire on September 3, 2009. January 10, 2007.

Copyright Notice

   Copyright (c) 2009 IETF Trust and the persons identified as the
   document authors. All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document. document (http://trustee.ietf.org/license-info).
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.

Abstract

   A wavelength switched optical network (WSON) requires that certain
   key information elements are made available to facilitate path
   computation and the establishment of label switching paths (LSPs).
   The information model described in "Routing and Wavelength Assignment
   Information for Wavelength Switched Optical Networks" shows what
   information is required at specific points in the WSON.

   The information may be used in Generalized Multiprotocol Label
   Switching (GMPLS) signaling protocols, and may be distributed by
   GMPLS routing protocols. Other distribution mechanisms (for example,
   XML-based protocols) may also be used.

   This document provides efficient, protocol-agnostic encodings for the
   information elements necessary to operate a WSON. It is intended that
   protocol-specific documents will reference this memo to describe how
   information is carried for specific uses.

Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC-2119 [RFC2119].

Table of Contents

   1. Introduction...................................................3
      1.1. Revision History..........................................4
         1.1.1. Changes from 00 draft................................4
         1.1.2. Changes from 01 draft................................4
   2. Terminology....................................................4
   3. Encoding of WSON Information: Sub-TLVs.........................5 Common Field Encoding..........................................5
      3.1. Link Set Sub-TLV..........................................5 Field............................................5
      3.2. Connectivity Matrix Sub-TLV...............................6
      3.3. Wavelength Information Encoding..........................10
      3.4. Encoding...........................7
      3.3. Wavelength Set Sub-TLV...................................11
         3.4.1. Field......................................8
         3.3.1. Inclusive/Exclusive Wavelength Lists................11
         3.4.2. Lists.................9
         3.3.2. Inclusive/Exclusive Wavelength Ranges...............12
         3.4.3. Ranges................9
         3.3.3. Bitmap Wavelength Set...............................12
      3.5. Set...............................10
   4. Wavelength and Connectivity sub-TLV Encodings.................10
      4.1. Available Wavelengths Sub-TLV............................11
      4.2. Shared Backup Wavelengths Sub-TLV........................11
      4.3. Connectivity Matrix Sub-TLV..............................11
      4.4. Port Wavelength Restriction sub-TLV......................14
      3.6. sub-TLV......................12
         4.4.1. SIMPLE_WAVELENGTH...................................13
         4.4.2. CHANNEL_COUNT.......................................14
         4.4.3. WAVEBAND1...........................................14
         4.4.4. SIMPLE_WAVELENGTH & CHANNEL_COUNT...................14
   5. Wavelength Converter Pool Encoding............................15
      5.1. Wavelength Converter Set Sub-TLV.........................15
      3.7. Field...........................15
      5.2. Wavelength Converter Accessibility Sub-TLV...............16
      3.8.
      5.3. Wavelength Conversion Range Sub-TLV......................19
      3.9. WC Sub-TLV......................17
      5.4. Wavelength Converter Usage State Sub-TLV...................................21
   4. Composite TLVs................................................22
      4.1. Sub-TLV.................18
   6. WSON Node TLV............................................22
      4.2. Encoding Usage Recommendations...........................19
      6.1. WSON Link TLV............................................23
      4.3. Node TLV............................................19
      6.2. WSON Dynamic Node TLV....................................19
      6.3. WSON Link TLV....................................24
      4.4. TLV............................................20
      6.4. WSON Dynamic Node TLV....................................24
   5. Security Considerations.......................................24
   6. IANA Considerations...........................................24 Link TLV....................................20
   7. Acknowledgments...............................................25 Security Considerations.......................................20
   8. References....................................................26
      8.1. IANA Considerations...........................................20
   9. Acknowledgments...............................................21
   APPENDIX A: Encoding Examples....................................22
      A.1. Wavelength Set Field.....................................22
      A.2. Connectivity Matrix Sub-TLV..............................22
      A.3. Wavelength Converter Accessibility Sub-TLV...............26
      A.4. Wavelength Conversion Range Sub-TLV......................28
   10. References...................................................30
      10.1. Normative References.....................................26
      8.2. References....................................30
      10.2. Informative References...................................26
   9. Contributors..................................................28 References..................................30
   11. Contributors.................................................32
   Authors' Addresses...............................................28 Addresses...............................................32
   Intellectual Property Statement..................................29 Statement..................................33
   Disclaimer of Validity...........................................30 Validity...........................................34

1. Introduction

   A Wavelength Switched Optical Network (WSON) is a Wavelength Division
   Multiplexing (WDM) optical network in which switching is performed
   selectively based on the center wavelength of an optical signal.

   [WSON-Frame] describes a framework for Generalized Multiprotocol
   Label Switching (GMPLS) and Path Computation Element (PCE) control of
   a WSON. Based on this framework, [WSON-Info] describes an information
   model that specifies what information is needed at various points in
   a WSON in order to compute paths and establish Label Switched Paths
   (LSPs).

   This document provides efficient encodings of information needed by
   the routing and wavelength assignment (RWA) process in a WSON. Such
   encodings can be used to extend GMPLS signaling and routing
   protocols. In addition these encodings could be used by other
   mechanisms to convey this same information to a path computation
   element (PCE). Note that since these encodings are relatively
   efficient they can provide more accurate analysis of the control
   plane communications/processing load for WSONs looking to utilize a
   GMPLS control plane.

1.1. Revision History

   1.1.1. Changes from 00 draft

   Edits to make consistent with update to [Otani], i.e., removal of
   sign bit.

   Clarification of TBD on connection matrix type and possibly
   numbering.

   New sections for wavelength converter pool encoding: Wavelength
   Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV,
   Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV.

   Added optional wavelength converter pool TLVs to the composite node
   TLV.

   1.1.2. Changes from 01 draft

   The encoding examples have been moved to an appendix. Classified and
   corrected information elements as either reusable fields or sub-TLVs.
   Updated Port Wavelength Restriction sub-TLV. Added available
   wavelength and shared backup wavelength sub-TLVs. Changed the title
   and scope of section 6 to recommendations since the higher level TLVs
   that this encoding will be used in is somewhat protocol specific.

2. Terminology

   CWDM: Coarse Wavelength Division Multiplexing.

   DWDM: Dense Wavelength Division Multiplexing.

   FOADM: Fixed Optical Add/Drop Multiplexer.

   ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port
   count wavelength selective switching element featuring ingress and
   egress line side ports as well as add/drop side ports.

   RWA: Routing and Wavelength Assignment.

   Wavelength Conversion. The process of converting an information
   bearing optical signal centered at a given wavelength to one with
   "equivalent" content centered at a different wavelength. Wavelength
   conversion can be implemented via an optical-electronic-optical (OEO)
   process or via a strictly optical process.

   WDM: Wavelength Division Multiplexing.

   Wavelength Switched Optical Network (WSON): A WDM based optical
   network in which switching is performed selectively based on the
   center wavelength of an optical signal.

3. Common Field Encoding of WSON Information: Sub-TLVs

   A TLV

   In encoding of the high level WSON information model [WSON-Info]
   is given in the following sections. This encoding is designed to be
   suitable for use in the GMPLS routing protocols OSPF [RFC4203] and
   IS-IS [RFC5307] both sets of links and in the PCE protocol PCEP [PCEP]. Note that sets of
   wavelengths frequently arise. In the
   information distributed in [RFC4203] and [RFC5307] is arranged via following we specify the nesting of sub-TLVs within TLVs and this document makes use
   encoding of
   such constructs. these repeatedly used fields.

3.1. Link Set Sub-TLV Field

   We will frequently need to describe properties of groups of links. To
   do so efficiently we can make use of a link set concept similar to
   the label set concept of [RFC3471]. All links will be denoted by
   their local link identifier as defined an used in [RFC4202],
   [RFC4203], and [RFC5307].

   The [RFC5307].The information carried in a Link Set is
   defined by:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Action     |Dir|  Format   |         Reserved         Length                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Link Identifier 1                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                               :                               :
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Link Identifier N                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Action: 8 bits

         0 - Inclusive List

   Indicates that the TLV contains one or more link elements that identifiers are included in the Link
   Set.

         2 Each identifies a separate link that is part of the set.

         1 - Inclusive Range

   Indicates that the TLV contains Link Set defines a range of links.  The object/TLV  It contains
   two link elements. identifiers. The first element identifiers indicates the start of
   the range. range (inclusive). The second element identifiers indicates the end of
   the range. range (inclusive). All links with numeric values between the
   bounds are considered to be part of the set. A value of zero in
   either position indicates that there is no bound on the corresponding
   portion of the range.

   Dir: Directionality Note that the Action field can be set to
   0x02(Inclusive Range) only when unnumbered link identifier is used.

     Dir: Directionality of the Link Set (2 bits)

        0 -- bidirectional
         1 -- incoming

         2 -- outgoing

   In optical networks we think in terms of unidirectional as well as
   bidirectional links. For example, wavelength restrictions or
   connectivity may be different for an ingress port, than for its
   "companion" egress port if one exists. Note that "interfaces" such as
   those discussed in the Interfaces MIB [RFC2863] are assumed to be
   bidirectional. This also applies to the links advertised in various
   link state routing protocols.

     Format: The format of the link identifier (6 bits)

   0 -- Link Local Identifier

   Indicates that the links in the Link Set are identified by link local
   identifiers. All link local identifiers are supplied in the context
   of the advertising node.

   1 -- Local Interface IPv4 Address

  2 -- Local Interface IPv6 Address

   Indicates that the links in the Link Set are identified by Local
   Interface IP Address. All Local Interface IP Address are supplied in
   the context of the advertising node.

         Others TBD.

   Note that all link identifiers in the same list must be of the same
   type.

   Reserved:

     Length: 16 bits

   This field is reserved. It MUST be set to zero on transmission and
   MUST be ignored on receipt. indicates the total length of the Link Set field.

     Link Identifier: length is dependent on the link format

   The link identifier represents the port which is being described
   either for connectivity or wavelength restrictions. This can be the
   link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS
   OSPF routing, and [RFC5307] IS-IS GMPLS routing. The use of the link
   local identifier format can result in more compact WSON encodings
   when the assignments are done in a reasonable fashion.

3.2. Connectivity Matrix Sub-TLV

   The switch and fixed connectivity matrices of [WSON-Info] can be
   compactly represented in terms of a minimal list Wavelength Information Encoding

   This document makes frequent use of ingress and
   egress port set pairs that have mutual connectivity. As described the lambda label format defined
   in
   [Switch] such a minimal list representation leads naturally to a
   graph representation [Otani] shown below strictly for path computation purposes that involves the
   fewest additional nodes and links.

   A TLV encoding of this list of link set pairs is: reference purposes:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid | Connectivity  C.S. |  Reserved       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Set A #1                         |
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Set B #1                         :
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Additional Link set pairs as needed               n               |
      :                     to specify connectivity                   :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Where Connectivity = 0 if the device

   Grid is fixed

                        1 if the device used to indicate which ITU-T grid specification is switched(e.g., ROADM/OXC)

   TBD: Should we just have two sub-TLVs one for fixed one for switched,
   or should we number matrices for being
   used.

   C.S. = Channel spacing used in a more general solution.

   Example:

   Suppose we have DWDM system, i.e., with a typical 2-degree 40 channel ROADM. In addition ITU-T
   G.694.1 grid.

   n = Used to
   its two line side ports it has 80 add specify the frequency as 193.1THz +/- n*(channel spacing)
   and 80 drop ports. The picture
   below illustrates how a typical 2-degree ROADM system that works with
   bi-directional fiber pairs n is an integer to take either a highly asymmetrical system composed negative, zero or a positive
   value.

3.3. Wavelength Set Field

   Wavelength sets come up frequently in WSONs to describe the range of two unidirectional
   a laser transmitter, the wavelength restrictions on ROADM subsystems.

                         (Tributary) Ports #3-#42
                     Ingress added to    Egress dropped ports, or
   the availability of wavelengths on a DWDM link. The general format
   for a wavelength set is given below. This format uses the Action
   concept from
                     West Line Egress    East Line Ingress
                           vvvvv          ^^^^^ [RFC3471] with an additional Action to define a "bit
   map" type of label set. Note that the second 32 bit field is a lambda
   label in the previously defined format. This provides important
   information on the WDM grid type and channel spacing that will be
   used in the compact encodings listed.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | |||.| Action|    Num Wavelengths    | |||.|
                    +-----| |||.|--------| |||.|------+          Length               |    +----------------------+
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |    Reserved     |  n  for lowest frequency      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |
        Egress      |    | Unidirectional ROADM |     |    Ingress
   -----------------+    |                      |     +--------------
   <=====================|                      |===================<
   -----------------+    +----------------------+     +--------------
                    |                                 |
        Port #1     |                                 |   Port #2
   (West Line Side) |                                 |(East Line Side)
   -----------------+    +----------------------+     +--------------
   >=====================|                      |===================>
   -----------------+    | Unidirectional ROADM |     +--------------
        Ingress     |    |                      |     |    Egress
                    |    |              _       |     |
                    |    +----------------------+     |
                    +-----| |||.|--------| |||.|------+     Additional fields as necessary per action                 | |||.|
     | |||.|
                           vvvvv          ^^^^^
                     (Tributary) Ports #43-#82
                Egress dropped from    Ingress added to
                West Line ingress      East Line egress

   Referring to the figure we see that the ingress direction of ports
   #3-#42 (add ports) can only connect to the egress on port #1. While
   the ingress side of port #2 (line side) can only connect to the
   egress on ports #3-#42 (drop) and to the egress on port #1 (pass
   through). Similarly,

   Action:

         0 - Inclusive List

         1 - Exclusive List
         2 - Inclusive Range

         3 - Exclusive Range

         4 - Bitmap Set

   3.3.1. Inclusive/Exclusive Wavelength Lists

   In the ingress direction case of ports #43-#82 can only
   connect to the egress on port #2 (line). While the ingress direction
   of port #1 can only connect to inclusive/exclusive lists the egress on ports #43-#82 (drop) or
   port #2 (pass through). We can now represent this potential
   connectivity matrix as follows. This representation uses only 30 32-
   bit words. wavelength set
   format is given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Conn =
     |0 or 1 |                 Reserved                      |1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                          Note: adds to line
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Num Wavelengths       |  Action=2     |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |2
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+          Length               |                     Link Local Identifier = #3                |3
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #42               |4
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  Action=0     |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  C.S. |                     Link Local Identifier = #1                |6
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to drops
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      Reserved   |  Action=0     |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |7
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    n  for lowest frequency    |                     Link Local Identifier = #2                |8
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=2     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|9
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    n2                         |                     Link Local Identifier = #3                |10
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+          n3                   |                     Link Local Identifier = #42               |11
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to line
     :                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |12
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    nm                         |                     Link Local Identifier = #2                |13
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |  Action=0     |1 0|0
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Where Num Wavelengths tells us the number of wavelength in this
   inclusive or exclusive list this does not include the initial
   wavelength in the list hence if the number of wavelengths is odd then
   zero padding of the last half word is required.

   3.3.2. Inclusive/Exclusive Wavelength Ranges

   In the case of inclusive/exclusive ranges the wavelength set format
   is given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 0|Reserved(Note: inclusive range)|14 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |2 or 3 |                     Link Local Identifier = #1                |15
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                Note: adds to line
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Num Wavelengths       |  Action=2     |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |16
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+             Length            |                     Link Local Identifier = #42               |17
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |                     Link Local Identifier = #82               |18
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  C.S. |  Action=0     |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |19
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #2                |20
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to drops
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |21
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #1                |22
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=2     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|23
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #43               |24
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #82               |25
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to line
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |26
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #1                |27
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    Reserved     |  Action=0     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|28
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      n  for lowest frequency  |                     Link Local Identifier = #2                |30
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.3.
   In this case Num Wavelengths specifies the number of wavelengths in
   the range starting at the given wavelength and incrementing the Num
   Wavelengths number of channel spacing up in frequency.

   3.3.3. Bitmap Wavelength Information Encoding

   This document makes frequent use Set

   In the case of Action = 4, the lambda label bitmap the wavelength set format defined
   in [Otani] shown below strictly for reference purposes: is
   given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  4    |   Num Wavelengths   |            Length               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |    Reserved   |      n  for lowest frequency    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Bit Map Word #1 (Lowest frequency channels)                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     :                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Bit Map Word #N (Highest frequency channels)               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Where

   Grid is used to indicate which ITU-T grid specification is being
   used.

   C.S. = Channel spacing used Num Wavelengths in a DWDM system, i.e., with a ITU-T
   G.694.1 grid.

   n = Used to specify this case tells us the frequency as 193.1THz +/- n*(channel spacing)
   and n is an integer to take either a negative, zero or a positive
   value.

3.4. Wavelength Set Sub-TLV

   Wavelength sets come up frequently number of wavelengths
   represented by the bit map. Each bit in WSONs to describe the range of bit map represents a laser transmitter,
   particular frequency with a value of 1/0 indicating whether the wavelength restrictions on ROADM ports,
   frequency is in the set or not. Bit position zero represents the availability of wavelengths on
   lowest frequency, while each succeeding bit position represents the
   next frequency a DWDM link. channel spacing (C.S.) above the previous.

   The general format
   for a wavelength set size of the bit map is given below. This format uses clearly Num Wavelengths bits, but the Action
   concept from [RFC3471] with an additional Action bit
   map is made up to define a "bit
   map" type full multiple of label set. Note 32 bits so that the second 32 bit field TLV is a lambda
   label
   multiple of four bytes. Bits that do not represent wavelengths (i.e.,
   those in positions (Num Wavelengths - 1) and beyond) SHOULD be set to
   zero and MUST be ignored.

4. Wavelength and Connectivity sub-TLV Encodings

   A type-length-value (TLV) encoding of the previously defined format. This provides important high level WSON information on
   model [WSON-Info] is given in the WDM grid type following sections. This encoding
   is designed to be suitable for use in the GMPLS routing protocols
   OSPF [RFC4203] and channel spacing IS-IS [RFC5307] and in the PCE protocol PCEP
   [PCEP]. Note that will be
   used the information distributed in [RFC4203] and
   [RFC5307] is arranged via the compact encodings listed.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Action        |   Reserved    |    Num nesting of sub-TLVs within TLVs and
   this document makes use of such constructs.

4.1. Available Wavelengths            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |    Reserved     |  n Sub-TLV

   To indicate the wavelengths available for lowest frequency      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Additional fields as necessary per action                 |
     |

   Action:

   0 - Inclusive List

   1 - Exclusive List

   2 - Inclusive Range

   3 - Exclusive Range

   4 - Bitmap Set

   3.4.1. Inclusive/Exclusive Wavelength Lists

   In use on a link the case Available
   Wavelengths sub-TLV consists of the inclusive/exclusive lists the a single variable length wavelength
   set
   format is given by: field as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Action=0 or 1  | Reserved      |      Num Wavelengths          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |      Reserved   |    n  for lowest frequency    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    n2
     |          n3                           Wavelength Set Field                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     :                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    nm                         |                                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Where Num

4.2. Shared Backup Wavelengths tells us the number of wavelength in this
   inclusive or exclusive list this does not include the initial
   wavelength in the list hence if Sub-TLV

   To indicate the number of wavelengths is odd then
   zero padding of the last half word is required.

   3.4.2. Inclusive/Exclusive Wavelength Ranges

   In available for shared backup use on a link
   the case Shared Backup Wavelengths sub-TLV consists of inclusive/exclusive ranges the a single variable
   length wavelength set format
   is given by: field as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Action=2 or 3  | Reserved      |      Num Wavelengths          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S.
     |    Reserved     |      n  for lowest frequency                           Wavelength Set Field                |
     :                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   In this case Num Wavelengths specifies the number

4.3. Connectivity Matrix Sub-TLV

   The switch and fixed connectivity matrices of wavelengths [WSON-Info] can be
   compactly represented in
   the range starting at the given wavelength and incrementing the Num
   Wavelengths number terms of channel spacing up a minimal list of ingress and
   egress port set pairs that have mutual connectivity. As described in frequency.

   3.4.3. Bitmap Wavelength Set

   In
   [Switch] such a minimal list representation leads naturally to a
   graph representation for path computation purposes that involves the case
   fewest additional nodes and links.

   A TLV encoding of Action = 4, the bitmap the wavelength this list of link set format is
   given by: pairs is:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Action = 4    | Reserved    |      Num Wavelengths            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid Connectivity  |  C.S.   MatrixID    |             Reserved          |      n  for lowest frequency    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Bit Map Word                         Link Set A #1 (Lowest frequency channels)                         |
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Set B #1                         :
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Bit Map Word #N (Highest frequency channels)                       Additional Link set pairs as needed     |
      :                     to specify connectivity                   :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Where Num Wavelengths in this case tells us the number of wavelengths
   represented by the bit map. Each bit in

   Connectivity is the bit map represents a
   particular frequency with a value of 1/0 indicating whether device type.

         0 -- the
   frequency device is in the set or not. Bit position zero represents fixed

         1 -- the
   lowest frequency, while each succeeding bit position device is switched(e.g., ROADM/OXC)

   MatrixID represents the
   next frequency a channel spacing (C.S.) above the previous.

   The size ID of the bit map connectivity matrix and is clearly Num Wavelengths bits, but the an 8 bit
   map is made up to a full multiple
   integer. The value of 32 bits so that the TLV 0xFF is a
   multiple of four bytes. Bits that do not represent wavelengths (i.e.,
   those in positions (Num Wavelengths - 1) reserved for use with port wavelength
   constraints and beyond) SHOULD should not be set used to
   zero and MUST identify a connectivity matrix.

4.4. Port Wavelength Restriction sub-TLV

   The port wavelength restriction of [WSON-Info] can be ignored.

   Example:

   A 40 channel C-Band DWDM system with 100GHz spacing with lowest
   frequency 192.0THz (1561.4nm) and highest frequency 195.9THz
   (1530.3nm). These frequencies correspond encoded as a
   sub-TLV as follows. More than one of these sub-TLVs may be needed to n = -11, and n = 28
   respectively. Now suppose the following channels
   fully specify a complex port constraint. When more than one of these
   sub-TLVs are available:

   Frequency (THz)    n Value      bit map position
   --------------------------------------------------
      192.0             -11               0
      192.5              -6               5
      193.1               0              11
      193.9               8              19
      194.0               9              20
      195.2              21              32
      195.8              27              38

   With present the Grid value set to resulting restriction is the intersection of
   the restrictions expressed in each sub-TLV. To indicate an ITU-T G.694.1 DWDM grid, C.S.
   set that a
   restriction applies to indicate 100GHz this lambda bit map set would then be encoded
   as follows: the port in general and not to a specific
   connectivity matrix use the reserved value of 0xFF for the MatrixID.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Action = 4   MatrixID    | Reserved  RestrictionType |    Num Wavelengths = 40      Reserved/Parameter    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |      Reserved
     | n  for lowest frequency = -11     Additional Restriction Parameters per RestrictionType    |
     :                                                               :
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 0 0 0 0 0 1 0|   Not used

   Where:

   MatrixID: either is the value in 40 Channel system (all zeros)   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.5. Port Wavelength Restriction the corresponding Connectivity
   Matrix sub-TLV

   The or takes the value OxFF to indicate the restriction
   applies to the port regardless of any Connectivity Matrix.

   RestrictionType can take the following values and meanings:

         0: SIMPLE_WAVELENGTH  (Simple wavelength restriction selective restriction)

         1: CHANNEL_COUNT (Channel count restriction)

         2: WAVEBAND1 (Waveband device with a tunable center frequency
         and passband)

         3: SIMPLE_WAVELENGTH & CHANNEL_COUNT (Combination of [WSON-Info]
         SIMPLE_WAVELENGTH and CHANNEL_COUNT restriction. The
         accompanying wavelength set and channel count indicate
         wavelength permitted on the port and the maximum number of
         channels that can be encoded as a
   sub-TLV as follows. simultaneously used on the port)

   4.4.1. SIMPLE_WAVELENGTH

   In the case of the SIMPLE_WAVELENGTH the GeneralPortRestrictions (or
   MatrixSpecificRestrictions) format is given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |RestrictionKind|T|  Reserved
     |     MaxNumChannels            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  --Wavelength Set-- MatrixID      | Action RstType = 0   |             Reserved          |    Num Wavelengths            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S.
     |    Reserved     |  n  for lowest frequency                        Wavelength Set Field                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Additional fields as necessary per action                 |
     |                                                               |

   RestrictionKind can take
   In this case the following values and meanings:

   0:   Simple accompanying wavelength selective restriction. Max number of channels set indicates the number of
   wavelengths permitted on the port and port.

   4.4.2. CHANNEL_COUNT

   In the
   accompanying wavelength set indicates case of the permitted values.

   1:   Waveband device with a tunable center frequency and passband. CHANNEL_COUNT the format is given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | MatrixID      | RstType = 1   |        MaxNumChannels         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   In this case the accompanying MaxNumChannels indicates the maximum
   number of channels indicates that can be simultaneously used on the maximum width
   of
   port/matrix.

   4.4.3. WAVEBAND1

   In the waveband in terms case of the channels spacing given in WAVEBAND1 the
   wavelength set. The corresponding wavelength set GeneralPortRestrictions (or
   MatrixSpecificRestrictions) format is used given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | MatrixID      | RstType = 2   |     MaxWaveBandWidth          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Wavelength Set                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   In this case the accompanying MaxWaveBandWidth indicates the maximum
   width of the waveband in terms of the channels spacing given in the
   wavelength set. The corresponding wavelength set is used to indicate
   the overall tuning range. Specific center frequency tuning
   information can be obtained from dynamic channel in use information.
   It is assumed that both center frequency and bandwidth (Q) tuning can
   be done without causing faults in existing signals.

   Values for T include:

   0 == Use with a fixed connectivity matrix

   1 == Use with a switched connectivity matrix

   TBD: Should we just have two flavors of sub-TLV, or if we add
   numbering to identify matrices we could add a number field here
   (using currently reserved bits) to associate the constraints with

   4.4.4. SIMPLE_WAVELENGTH & CHANNEL_COUNT

   In the
   right matrix.

3.6. Wavelength Converter Set Sub-TLV

   A WSON node may include a set case of wavelength converters (WC). We need
   to describe the WC list which a node supports. This can be done via a
   WC Set concept similar to SIMPLE_WAVELENGTH & CHANNEL_COUNT the label set concept of [RFC3471].

   The information carried in a WC set format is defined
   given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Action     |             Reserved                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ MatrixInfo    |     WC Identifier 1 RstType = 3   |        WC Identifier 2        MaxNumChannels         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     WC Identifier n-1
     |        WC Identifier n                     Wavelength Set Field                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Action: 8 bits

         0 - Inclusive List

   Indicates that

   In this case the TLV contains one or more WC elements that are
   included in accompanying wavelength set and MaxNumChannels
   indicate wavelength permitted on the list.

         2 - Inclusive Range

   Indicates that port and the TLV contains a range maximum number of WCs.  The object/TLV
   contains two WC elements. The first element indicates the start of
   the range. The second element indicates the end of the range. A value
   of zero indicates
   channels that there is no bound on the corresponding portion
   of the range.

      Reserved: 24 bits

   This field is reserved. It MUST be set to zero on transmission and
   MUST can be ignored simultaneously used on receipt.

      WC Identifier:

   The WC identifier represents the ID of the wavelength convertor which
   is a 16 bit integer.

3.7. port.

5. Wavelength Converter Accessibility Sub-TLV

   A WSON node may include wavelength converters. As described in [WSON-
   Info], we should give the accessibility Pool Encoding

   The encoding of structure and properties of a general wavelength
   converter to
   convert from a given ingress wavelength on a particular ingress
   port to a desired egress wavelength on pool utilizes a particular egress port.
   Before this, we need to describe the converter accessibility of sub-TLV, a
   wavelength converter to convert form a given ingress port to a desired egress
   port. This information can be determined by the PoolIngressMatrix range sub-TLV, and
   PoolEgressMatrix of [WSON-Info]. We can use a set of links (Link set)
   followed by a set wavelength converter state
   sub-TLV. All these sub-TLVs make use of WCs (WC set) to represent that this link the wavelength converter set can
   access this WC set. We use
   field.

5.1. Wavelength Converter Set Field

   A WSON node may include a set of wavelength converters (WC) and such
   information frequently is used in describing the wavelength converter
   pool and its properties. The WC (WC set) followed by Set field is defined in a similar
   manner to the label set concept of
   links (Link set) to represent that this [RFC3471].

   The information carried in a WC set can access this link
   set.

   The wavelength converter accessibility TLV field is defined by:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Num In Pairs    Action     |     Reserved  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    Ingress Link Set A #1        Length                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     WC  Set A #1 Identifier 1           |        WC Identifier 2        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                               :                               :
      :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     WC Identifier n-1         |        WC Identifier n        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Action: 8 bits

         0 - Inclusive List
   Indicates that the TLV contains one or more WC elements that are
   included in the list.

         2 - Inclusive Range

   Indicates that the TLV contains a range of WCs.  The object/TLV
   contains two WC elements. The first element indicates the start of
   the range. The second element indicates the end of the range. A value
   of zero indicates that there is no bound on the corresponding portion
   of the range.

      Reserved: 8 bits

   This field is reserved. It MUST be set to zero on transmission and
   MUST be ignored on receipt.

      Length: 16 bits

   The total length of this field in bytes.

      WC Identifier:

   The WC identifier represents the ID of the wavelength convertor which
   is a 16 bit integer.

5.2. Wavelength Converter Accessibility Sub-TLV

   This sub-TLV describes the structure of the wavelength converter pool
   in relation to the switching device. In particular it gives the
   ability of an ingress port to reach a wavelength converter and of a
   wavelength converter to reach a particular egress port. This is the
   PoolIngressMatrix and PoolEgressMatrix of [WSON-Info].

   The wavelength converter accessibility sub-TLV is defined by:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    Ingress Link Set Field A #1                |
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          WC Set Field A #1                    |
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Additional Link set and WC set pairs as needed to     |
      :                    specify PoolIngressMatrix                  :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             WC Set B Field #1 (for egress connectivity)       |
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                Egress link Set Field B #1                     |
      :                                                               :                               :
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Additional WC set and egress link set pairs           |
      :              as needed to specify PoolEgressMatrix            :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Where Num_In_Pairs tells us

   Note that the direction parameter within the Link Set Field is used
   to indicate whether the number of ingress link and WC set
   pairs. TBD: if is an ingress or egress link sets are identified in their own sub-TLVs and
   similarly for WC sets then we set.

5.3. Wavelength Conversion Range Sub-TLV

   Wavelength converters may not need this field.

   Example:

   Figure 1 shows have a wavelength converter pool architecture know as
   "shared per fiber". In this case limited input or output range.
   Additionally, due to the ingress and egress pool matrices structure of the optical system not all
   wavelengths can necessarily reach or leave all the converters. These
   properties are simply:

              +-----+       +-----+
              | 1 described by using one or more wavelength conversion
   sub-TLVs as defined below:

       0                   1 |       |                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 |
          WI =|     |,  WE =|     |
              | 1 2 3 4 5 6 7 8 9 0 1 |       | 2 3 4 5 6 7 8 9 0 1 |
              +-----+       +-----+

                    +-----------+                      +------+
                    |           |--------------------->|      |
                    |           |--------------------->|  C   |
              /|    |           |--------------------->|  o   | E1
        I1   /D+--->|           |--------------------->|  m   |
            + e+--->|           |                      |  b   |========>
   ========>| M|    |  Optical  |    +-----------+     |  i   | Port #3
   Port #1  + u+--->|   Switch  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     WC Pool  |     |  n   |
             \x+--->|           |    |  +-----+  |     |  e   |
              \|    |           +----+->|WC #1|--+---->|  r   |
                    |           |    |  +-----+  |     +------+
                    |           |    |           |     +------+
              /|    |           |    |  +-----+  |     |      |
        I2   /D+--->|           +----+->|WC #2|--+---->|  C   | E2
            + e+--->| Set Field                              |
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  +-----+                Input Wavelength Set Field                     |
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  o                Output Wavelength Set Field                    |
   ========>| M|    |           |    +-----------+     |  m   |========>
   Port #2  + u+--->|           |                      |  b   | Port #4
             \x+--->|           |--------------------->|  i   |
              \|    |           |--------------------->|  n   |
                    |           |--------------------->|  e   |
                    |           |--------------------->|  r   |
                    +-----------+                      +------+
    Figure 1 An optical switch featuring
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   WC Set Field:

   A set of wavelength converters (WCs) which have the same conversion
   range.

   Input Wavelength Set Field:

   Indicates the wavelength input range of the WCs in the corresponding
   WC set.

   Output Wavelength Set Field:

   Indicates the wavelength output range of WCs in the corresponding WC
   set.

5.4. Wavelength Converter Usage State Sub-TLV

   The usage state of a shared per fiber wavelength converter pool architecture.

   This wavelength is encoded as a bit map
   indicating whether the converter pool is available or in use. This
   information can be encoded relatively dynamic, i.e., can change when a
   connection is established or torn down. This bit map is in
   correspondence with a wavelength converter set as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Num In Pairs=1|                   Reserved                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  Note: I1,I2 can connect to either WC1 or WC2
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |0 1|0 0 0 0 0 0|Reserved(Note: inclusive list) |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Link Local Identifier = #1                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Link Local Identifier = #2                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |          Reserved(Note: inclusive                     WC list) Set Field                              |
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  WC ID = #1          |       WC ID = #2 Usage state bitmap                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        Note: WC1 can only connect to E1
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0                     ......             |       Reserved(Note: inclusive list)      Padding bits    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |

   WC ID = #1          |       zero padding            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |1 0|0 Usage state:  Variable Length but must be a multiple of 4 byes.

   Each bit indicates the usage status of one WC with 0 0 0 0 0|Reserved(Note: inclusive list) |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Link Local Identifier = #3                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        Note: WC2 can only connect to E2
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |       Reserved(Note: inclusive WC list)       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           WC ID = #2          |       zero padding            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive list) |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Link Local Identifier = #4                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.8. Wavelength Conversion Range Sub-TLV

   Since not all wavelengths can necessarily reach all the converters or indicating the converters may have limited input wavelength range we can have a
   set of ingress wavelength constraints for each wavelength converter.
   In addition, we also can have output wavelength constraints.

   The information carried in a wavelength conversion range Sub-TLV
   WC is
   defined by:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 available and 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Reserved                                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     WC Set #1                                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    Input Wavelength Set #1                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    Output Wavelength Set #1                   |
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Additional WC Wavelength constraint set pairs as needed  |
      :                                                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   WC Set:

   Indicates the WCs which have the same conversion range. We group the
   WCs which have indicating the same conversion range to WC Set followed by the
   input and output wavelength range for reducing the data size. is in used. The format sequence of
   the bit map is ordered according to the WC Set is consistent field with the encoding this sub-
   TLV.

   Padding bits: Variable Length

6. WSON Encoding Usage Recommendations

   In this section we give recommendations of typical usage of "WC Set Sub-
   TLV".

   Input Wavelength Set:

   Indicates the wavelength input range
   previously defined sub-TLVs. Typically the sub-TLVs defined in the
   preceding sections would be incorporated into some kind of WC(s). composite
   TLV. The format of Input Wavelength Set is consistent with example composite TLVs in the encoding of
   "Wavelength Set Sub-TLV".

   Output Wavelength Set:

   Indicates following sections are based
   on the wavelength output range four high level information bundles of WC(s). [WSON-Info].

6.1. WSON Node TLV

   The format WSON Node TLV could consist of Output Wavelength Set the following list of sub-TLVs:

   <Node_Info> ::= <Node_ID>[Other GMPLS sub-
   TLVs][<ConnectivityMatrix>...]
   [<WavelengthConverterPool>][<WCPoolState>]

6.2. WSON Dynamic Node TLV

   If the protocol supports the separation of dynamic information from
   relatively static information then the wavelength converter pool
   state can be separated from the general Node TLV into a dynamic Node
   TLV as follows.

   <NodeInfoDynamic> ::= <NodeID> [<WCPoolState>]
   Note that currently the only dynamic information modeled with a node
   is consistent associated with the encoding status of "Wavelength Set Sub-TLV".

   Example:

   We give an example based on figure 1 about how to represent the wavelength conversion range converter pool.

6.3. WSON Link TLV

   The new link related sub-TLVs could be incorporated into a composite
   link TLV as follows:

   <LinkInfo> ::=  <LinkID> [Other GMPLS sub-TLVs]
   <[PortWavelengthRestriction>...][<AvailableWavelengths>]
   [<SharedBackupWavelengths>]

6.4. WSON Dynamic Link TLV

   If the protocol supports the separation of wavelength converters. Suppose dynamic information from
   relatively static information then the available wavelength range of input and output
   shared backup status can be separated from the general link TLV into
   a TLV for dynamic link information.

   <DynamicLinkInfo> ::=  <LinkID> <AvailableWavelengths>
   [<SharedBackupWavelengths>]

   Where

   <LinkID> ::= <LocalLinkID> <LocalNodeID> <RemoteLinkID>
   <RemoteNodeID>

7. Security Considerations

   This document defines protocol-independent encodings for WSON
   information and does not introduce any security issues.

   However, other documents that make use of WC1 these encodings within
   protocol extensions need to consider the issues and WC2 are {L1, L2, L3,
   L4}:

       0                   1                   2                   3
       0 1 2 risks associated
   with, inspection, interception, modification, or spoofing of any of
   this information. It is expected that any such documents will
   describe the necessary security measures to provide adequate
   protection.

8. IANA Considerations

   TBD. Once our approach is finalized we may need identifiers for the
   various TLVs and sub-TLVs.

9. Acknowledgments

   This document was prepared using 2-Word-v2.0.template.dot.

APPENDIX A: Encoding Examples

   [Editors note: these examples will be revised once the changes to the
   encodings settle down.]

A.1. Wavelength Set Field

   Example:

   A 40 channel C-Band DWDM system with 100GHz spacing with lowest
   frequency 192.0THz (1561.4nm) and highest frequency 195.9THz
   (1530.3nm). These frequencies correspond to n = -11, and n = 28
   respectively. Now suppose the following channels are available:

   Frequency (THz)    n Value      bit map position
   --------------------------------------------------
      192.0             -11               0
      192.5              -6               5
      193.1               0              11
      193.9               8              19
      194.0               9              20
      195.2              21              32
      195.8              27              38

   With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S.
   set to indicate 100GHz this lambda bit map set would then be encoded
   as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Reserved                                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                             Note: WC Set
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |0 1|      Reserved(Note: inclusive list)       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           WC ID = #1          |       WC ID = #2              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                             Note: wavelength input range
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Action = 2    |   Reserved  4    | Num Wavelengths = 4        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Grid |  C.S. |     Reserved    |  n for lowest frequency = 1   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                             Note: wavelength output range
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Action = 2    |   Reserved 40  |    Num Wavelengths    Length = 4 16 bytes          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |      Reserved   | n  for lowest frequency = 1 -11 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.9. WC Usage State Sub-TLV

   WC Usage state dependents upon whether the wavelength converter in
   the pool is in use. This is the only state kept in the converter pool
   model.
     |1 0 0 0                   1                   2                   3 0 1 2 3 4 5 6 7 8 9 0 0 0 0 0 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 1 0 0 0 0 0 0 0 0 0 0 0|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 0 0 0 0 0 1 0|   Not used in 40 Channel system (all zeros)   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.2. Connectivity Matrix Sub-TLV

   Example:

   Suppose we have a typical 2-degree 40 channel ROADM. In addition to
   its two line side ports it has 80 add and 80 drop ports. The picture
   below illustrates how a typical 2-degree ROADM system that works with
   bi-directional fiber pairs is a highly asymmetrical system composed
   of two unidirectional ROADM subsystems.

                         (Tributary) Ports #3-#42
                     Ingress added to    Egress dropped from
                     West Line Egress    East Line Ingress
                           vvvvv          ^^^^^
                          |                     WC Set sub-TLV |||.|        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |||.|
                    +-----| |||.|--------| |||.|------+
                    |                     WC Usage state    +----------------------+     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    |                     ......    |      Padded bits                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   WC Usage state can be encoded by bit map. The bits indicate the usage
   state of the wavelength convertors which is being described in the WC
   Set sub-TLV.

   WC Usage state: : Variable Length.

   Each bit indicates the usage status of one WC. The sequence of the
   bit map is consistent with the WC list in this TLV.

   Padded bit: Variable Length

   It is used to pad the bit to make the whole number of bits in bitmap
   be the time of 32. Padded bit MUST be set to 0.

4. Composite TLVs

   The Four composite TLVs in     |
        Egress      |    | Unidirectional ROADM |     |    Ingress
   -----------------+    |                      |     +--------------
   <=====================|                      |===================<
   -----------------+    +----------------------+     +--------------
                    |                                 |
        Port #1     |                                 |   Port #2
   (West Line Side) |                                 |(East Line Side)
   -----------------+    +----------------------+     +--------------
   >=====================|                      |===================>
   -----------------+    | Unidirectional ROADM |     +--------------
        Ingress     |    |                      |     |    Egress
                    |    |              _       |     |
                    |    +----------------------+     |
                    +-----| |||.|--------| |||.|------+
                          | |||.|        | |||.|
                           vvvvv          ^^^^^
                     (Tributary) Ports #43-#82
                Egress dropped from    Ingress added to
                West Line ingress      East Line egress

   Referring to the following sections are based on figure we see that the
   four high level information bundles of [WSON-Info].

4.1. WSON Node TLV

   The WSON Node TLV consists ingress direction of ports
   #3-#42 (add ports) can only connect to the following ordered list egress on port #1. While
   the ingress side of sub-TLVs:

   <Node_Info> ::= <Node_ID> [<SwitchedConnectivityMatrix>]
   [<FixedConnectivityMatrix>], [<SRNG>] [<WavelengthConverterPool>]

   o  Node ID (This will be derived from standard IETF node identifiers)

   o  Switch Connectivity Matrix - (optional) This is a connectivity
      matrix sub-TLV with port #2 (line side) can only connect to the connectivity type set
   egress on ports #3-#42 (drop) and to "switched" (conn
      = 1)

   o  Fixed Connectivity Matrix - (optional) This is a connectivity
      matrix sub-TLV with the connectivity type set egress on port #1 (pass
   through). Similarly, the ingress direction of ports #43-#82 can only
   connect to "fixed" (conn =
      0).

   o  Shared Risk Node Group - (optional) Format TBD (note that current
      GMPLS SRLG encoding is general enough the egress on port #2 (line). While the ingress direction
   of port #1 can only connect to include SRNG
      information).

   o  Wavelength Converter Pool TLVs- (optional) Wavelength Converter
      Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, and
      Wavelength Conversion Range Sub-TLV.

4.2. WSON the egress on ports #43-#82 (drop) or
   port #2 (pass through). We can now represent this potential
   connectivity matrix as follows. This representation uses only 30 32-
   bit words.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Conn = 1   |    MatrixID   |      Reserved                 |1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                          Note: adds to line
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=2     |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |2
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #3                |3
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #42               |4
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #1                |6
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to drops
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |7
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #2                |8
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=2     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|9
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #3                |10
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #42               |11
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to line
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |12
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #2                |13
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|14
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #1                |15
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                Note: adds to line
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=2     |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |16
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #42               |17
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #82               |18
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |19
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #2                |20
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to drops
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |21
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link TLV

   Note that Local Identifier = #1                |22
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=2     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|23
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #43               |24
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #82               |25
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to line
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |26
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #1                |27
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|28
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #2                |30
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.3. Wavelength Converter Accessibility Sub-TLV

   Example:

   Figure 1 shows a wavelength converter pool architecture know as
   "shared per fiber". In this case the ingress and egress pool matrices
   are simply:

              +-----+       +-----+
              | 1 1 |       | 1 0 |
          WI =|     |,  WE =|     |
              | 1 1 |       | 0 1 |
              +-----+       +-----+

                    +-----------+                      +------+
                    |           |--------------------->|      |
                    |           |--------------------->|  C   |
              /|    |           |--------------------->|  o   | E1
        I1   /D+--->|           |--------------------->|  m   |
            + e+--->|           |                      |  b   |========>
   ========>| M|    |  Optical  |    +-----------+     |  i   | Port #3
   Port #1  + u+--->|   Switch  |    |  WC Pool  |     |  n   |
             \x+--->|           |    |  +-----+  |     |  e   |
              \|    |           +----+->|WC #1|--+---->|  r   |
                    |           |    |  +-----+  |     +------+
                    |           |    |           |     +------+
              /|    |           |    |  +-----+  |     |      |
        I2   /D+--->|           +----+->|WC #2|--+---->|  C   | E2
            + e+--->|           |    |  +-----+  |     |  o   |
   ========>| M|    |           |    +-----------+     |  m   |========>
   Port #2  + u+--->|           |                      |  b   | Port #4
             \x+--->|           |--------------------->|  i   |
              \|    |           |--------------------->|  n   |
                    |           |--------------------->|  e   |
                    |           |--------------------->|  r   |
                    +-----------+                      +------+
    Figure 1 An optical switch featuring a number of sub-TLVs for links have already been defined
   and it is for further study if we shared per fiber wavelength
                       converter pool architecture.

   This wavelength converter pool can or should reuse any of those
   sub-TLVs in our encoding. Note that for a system already employing
   GMPLS based routing the existing encodings and transport mechanisms
   should be used and the information does not need encoded as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Num In Pairs=1|                   Reserved                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  Note: I1,I2 can connect to appear twice.

   <LinkInfo> ::=  <LinkID> [<AdministrativeGroup>] [<InterfaceCapDesc>]
   [<Protection>] [<SRLG>]... [<TrafficEngineeringMetric>]
   [<MaximumBandwidthPerChannel>] <[SwitchedPortWavelengthRestriction>]
   [<FixedPortWavelengthRestriction>]

   o either WC1 or WC2
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |0 1|0 0 0 0 0 0|Reserved(Note: inclusive list) |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Link Local Identifier = #1                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Link Local Identifier = #2                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |          Reserved(Note: inclusive WC list)    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           WC ID = #1          |       WC ID = #2              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        Note: WC1 can only connect to E1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |       Reserved(Note: inclusive list)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           WC ID = #1          |       zero padding            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive list) |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Link Local Identifier = #3                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                        Note: WC2 can only connect to E2
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |       Reserved(Note: inclusive WC list)       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           WC ID = #2          |       zero padding            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive list) |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Link Local Identifier - Need to double check on this with RFC4203
      (required).

   o  Administrative Group - (optional) Standard sub-TLV type 9,
      RFC3630.

   o  Interface Switching Capability Descriptor - Standard sub-TLV type
      15, RFC4203.

   o  Protection - (optional) Standard sub-TLV type 15, RFC4203.

   o  Shared Risk Link Group - (optional) Standard sub-TLV 16, RFC4203.

   o  Traffic Engineering Metric - (optional) Standard sub-TLV type 5,
      RFC3630.

   o  Maximum Bandwidth per Channel - TBD.

   o  Switched Port Wavelength Restriction - (optional) The port
      wavelength restriction sub-TLV with T = 1.

   o  Fixed Port #4                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.4. Wavelength Restriction - (optional) The port Conversion Range Sub-TLV

   Example:

   We give an example based on figure 1 about how to represent the
   wavelength
      restriction sub-TLV with T = 0.

4.3. WSON Dynamic Link TLV

   <DynamicLinkInfo> ::=  <LinkID> <AvailableWavelengths>
   [<SharedBackupWavelengths>]

   Where

   <LinkID> ::= <LocalLinkID> <LocalNodeID> <RemoteLinkID>
   <RemoteNodeID>

   o  Available Wavelengths - A conversion range of wavelength set sub-TLV used to indicate
      which wavelengths are available on this link.

   o  Shared Backup Wavelengths - (optional) A converters. Suppose the
   wavelength set sub-TLV
      used to indicate which wavelengths on this link range of input and output of WC1 and WC2 are currently used
      for shared backup protection (and hence can possibly be reused).

4.4. WSON Dynamic Node TLV

   <NodeInfoDynamic> ::= <NodeID> [<WCPoolState>]

   o  Node ID - Format TBD.

   o  Wavelength Converter Pool Status - (optional) This is the {L1, L2, L3,
   L4}:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Reserved                                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                             Note: WC Set
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Action=0     |0 1|      Reserved(Note: inclusive list)       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           WC Usage
      state sub-TLV.

   Note that currently the only dynamic information modeled with a node
   is associated with the status of the ID = #1          |       WC ID = #2              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                             Note: wavelength converter pool.

5. Security Considerations

   This document defines protocol-independent encodings input range
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Action = 2    |   Reserved    |    Num Wavelengths = 4        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Grid |  C.S. |     Reserved    |  n for WSON
   information and does not introduce any security issues.

   However, other documents that make use of these encodings within
   protocol extensions need to consider the issues and risks associated
   with, inspection, interception, modification, or spoofing of any of
   this information. It is expected that any such documents will
   describe the necessary security measures to provide adequate
   protection.

6. IANA Considerations

   TBD. Once our approach is finalized we may need identifiers lowest frequency = 1   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                             Note: wavelength output range
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Action = 2    |   Reserved    |    Num Wavelengths = 4        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Grid |  C.S. |     Reserved    |  n for the
   various TLVs and sub-TLVs.

7. Acknowledgments

   This document was prepared using 2-Word-v2.0.template.dot.

8. lowest frequency = 1   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

10. References

8.1.

10.1. Normative References

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
             MIB", RFC 2863, June 2000.

   [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching
             (GMPLS) Signaling Functional Description", RFC 3471,
             January 2003.

   [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM
             applications: DWDM frequency grid", June, 2002.

   [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions
             in Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 4202, October 2005

   [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in
             Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 4203, October 2005.

   [Otani]   T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized
             Labels for G.694 Lambda-Switching Capable Label Switching
             Routers", work in progress: draft-ietf-ccamp-gmpls-g-694-
             lambda-labels-03.txt.

8.2.

10.2. Informative References

   [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM
             applications: DWDM frequency grid, June 2002.

   [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM
             applications: CWDM wavelength grid, December 2003.

   [Otani]   T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized
             Labels for G.694 Lambda-Switching Capable Label Switching
             Routers", work in progress: draft-ietf-ccamp-gmpls-g-694-
             lambda-labels.

   [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions
             in Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 5307, October 2008.

   [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling
         WDM Wavelength Switching Systems for use Use in GMPLS and Automated
         Path Computation", http://www.grotto-
         networking.com/wson/ModelingWSONswitchesV2a.pdf , Journal of Optical Communications and
         Networking, vol. 1, June, 2008 2009, pp. 187-195.

   [WSON-Frame] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS
             and PCE Control of Wavelength Switched Optical Networks",
             work in progress: draft-ietf-ccamp-wavelength-switched-
             framework-01.txt, July 2008.
             framework, Marh 2009.

   [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and
             Wavelength Assignment Information Model for Wavelength
             Switched Optical Networks", work in progress: draft-ietf-
             ccamp-rwa-info-01.txt, October 2008.
             ccamp-rwa-info, March 2009.

   [PCEP]    Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
             Element (PCE) communication Protocol (PCEP) - Version 1",
             draft-ietf-pce-pcep, work in progress.

9.
             RFC5440.

11. Contributors

   Diego Caviglia
   Ericsson
   Via A. Negrone 1/A 16153
   Genoa Italy

   Phone: +39 010 600 3736
   Email: diego.caviglia@(marconi.com, ericsson.com)

   Anders Gavler
   Acreo AB
   Electrum 236
   SE - 164 40 Kista Sweden

   Email: Anders.Gavler@acreo.se

   Jonas Martensson
   Acreo AB
   Electrum 236
   SE - 164 40 Kista, Sweden

   Email: Jonas.Martensson@acreo.se

   Itaru Nishioka
   NEC Corp.
   1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666
   Japan

   Phone: +81 44 396 3287
   Email: i-nishioka@cb.jp.nec.com

Authors' Addresses

   Greg M. Bernstein (ed.)
   Grotto Networking
   Fremont California, USA

   Phone: (510) 573-2237
   Email: gregb@grotto-networking.com
   Young Lee (ed.)
   Huawei Technologies
   1700 Alma Drive, Suite 100
   Plano, TX 75075
   USA

   Phone: (972) 509-5599 (x2240)
   Email: ylee@huawei.com

   Dan Li
   Huawei Technologies Co., Ltd.
   F3-5-B R&D Center, Huawei Base,
   Bantian, Longgang District
   Shenzhen 518129 P.R.China

   Phone: +86-755-28973237
   Email: danli@huawei.com

   Wataru Imajuku
   NTT Network Innovation Labs
   1-1 Hikari-no-oka, Yokosuka, Kanagawa
   Japan

   Phone: +81-(46) 859-4315
   Email: imajuku.wataru@lab.ntt.co.jp

   Jianrui Han
   Huawei Technologies Co., Ltd.
   F3-5-B R&D Center, Huawei Base,
   Bantian, Longgang District
   Shenzhen 518129 P.R.China

   Phone: +86-755-28972916
   Email: hanjianrui@huawei.com

Intellectual Property Statement

   The IETF Trust takes no position regarding the validity or scope of
   any Intellectual Property Rights or other rights that might be
   claimed to pertain to the implementation or use of the technology
   described in any IETF Document or the extent to which any license
   under such rights might or might not be available; nor does it
   represent that it has made any independent effort to identify any
   such rights.

   Copies of Intellectual Property disclosures made to the IETF
   Secretariat and any assurances of licenses to be made available, or
   the result of an attempt made to obtain a general license or
   permission for the use of such proprietary rights by implementers or
   users of this specification can be obtained from the IETF on-line IPR
   repository at http://www.ietf.org/ipr

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   any standard or specification contained in an IETF Document. Please
   address the information to the IETF at ietf-ipr@ietf.org.

Disclaimer of Validity

   All IETF Documents and the information contained therein are provided
   on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
   REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
   IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
   WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
   WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE
   ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
   FOR A PARTICULAR PURPOSE.

Acknowledgment

   Funding for the RFC Editor function is currently provided by the
   Internet Society.