draft-ietf-ccamp-rwa-wson-encode-01.txt   draft-ietf-ccamp-rwa-wson-encode-02.txt 
Network Working Group G. Bernstein Network Working Group G. Bernstein
Internet Draft Grotto Networking Internet Draft Grotto Networking
Intended status: Standards Track Y. Lee Intended status: Standards Track Y. Lee
Expires: September 2009 D. Li Expires: January 2010 D. Li
Huawei Huawei
W. Imajuku W. Imajuku
NTT NTT
March 3, 2009 July 10, 2009
Routing and Wavelength Assignment Information Encoding for Routing and Wavelength Assignment Information Encoding for
Wavelength Switched Optical Networks Wavelength Switched Optical Networks
draft-ietf-ccamp-rwa-wson-encode-01.txt draft-ietf-ccamp-rwa-wson-encode-02.txt
Status of this Memo Status of this Memo
This Internet-Draft is submitted to IETF in full conformance with the This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79. provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet- other groups may also distribute working documents as Internet-
Drafts. Drafts.
skipping to change at page 1, line 38 skipping to change at page 1, line 38
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html http://www.ietf.org/shadow.html
This Internet-Draft will expire on September 3, 2009. This Internet-Draft will expire on January 10, 2007.
Copyright Notice Copyright Notice
Copyright (c) 2009 IETF Trust and the persons identified as the Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents in effect on the date of
(http://trustee.ietf.org/license-info) in effect on the date of publication of this document (http://trustee.ietf.org/license-info).
publication of this document. Please review these documents Please review these documents carefully, as they describe your rights
carefully, as they describe your rights and restrictions with respect and restrictions with respect to this document.
to this document.
Abstract Abstract
A wavelength switched optical network (WSON) requires that certain A wavelength switched optical network (WSON) requires that certain
key information elements are made available to facilitate path key information elements are made available to facilitate path
computation and the establishment of label switching paths (LSPs). computation and the establishment of label switching paths (LSPs).
The information model described in "Routing and Wavelength Assignment The information model described in "Routing and Wavelength Assignment
Information for Wavelength Switched Optical Networks" shows what Information for Wavelength Switched Optical Networks" shows what
information is required at specific points in the WSON. information is required at specific points in the WSON.
skipping to change at page 2, line 39 skipping to change at page 2, line 38
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [RFC2119]. document are to be interpreted as described in RFC-2119 [RFC2119].
Table of Contents Table of Contents
1. Introduction...................................................3 1. Introduction...................................................3
1.1. Revision History..........................................4 1.1. Revision History..........................................4
1.1.1. Changes from 00 draft................................4 1.1.1. Changes from 00 draft................................4
1.1.2. Changes from 01 draft................................4
2. Terminology....................................................4 2. Terminology....................................................4
3. Encoding of WSON Information: Sub-TLVs.........................5 3. Common Field Encoding..........................................5
3.1. Link Set Sub-TLV..........................................5 3.1. Link Set Field............................................5
3.2. Connectivity Matrix Sub-TLV...............................6 3.2. Wavelength Information Encoding...........................7
3.3. Wavelength Information Encoding..........................10 3.3. Wavelength Set Field......................................8
3.4. Wavelength Set Sub-TLV...................................11 3.3.1. Inclusive/Exclusive Wavelength Lists.................9
3.4.1. Inclusive/Exclusive Wavelength Lists................11 3.3.2. Inclusive/Exclusive Wavelength Ranges................9
3.4.2. Inclusive/Exclusive Wavelength Ranges...............12 3.3.3. Bitmap Wavelength Set...............................10
3.4.3. Bitmap Wavelength Set...............................12 4. Wavelength and Connectivity sub-TLV Encodings.................10
3.5. Port Wavelength Restriction sub-TLV......................14 4.1. Available Wavelengths Sub-TLV............................11
3.6. Wavelength Converter Set Sub-TLV.........................15 4.2. Shared Backup Wavelengths Sub-TLV........................11
3.7. Wavelength Converter Accessibility Sub-TLV...............16 4.3. Connectivity Matrix Sub-TLV..............................11
3.8. Wavelength Conversion Range Sub-TLV......................19 4.4. Port Wavelength Restriction sub-TLV......................12
3.9. WC Usage State Sub-TLV...................................21 4.4.1. SIMPLE_WAVELENGTH...................................13
4. Composite TLVs................................................22 4.4.2. CHANNEL_COUNT.......................................14
4.1. WSON Node TLV............................................22 4.4.3. WAVEBAND1...........................................14
4.2. WSON Link TLV............................................23 4.4.4. SIMPLE_WAVELENGTH & CHANNEL_COUNT...................14
4.3. WSON Dynamic Link TLV....................................24 5. Wavelength Converter Pool Encoding............................15
4.4. WSON Dynamic Node TLV....................................24 5.1. Wavelength Converter Set Field...........................15
5. Security Considerations.......................................24 5.2. Wavelength Converter Accessibility Sub-TLV...............16
6. IANA Considerations...........................................24 5.3. Wavelength Conversion Range Sub-TLV......................17
7. Acknowledgments...............................................25 5.4. Wavelength Converter Usage State Sub-TLV.................18
8. References....................................................26 6. WSON Encoding Usage Recommendations...........................19
8.1. Normative References.....................................26 6.1. WSON Node TLV............................................19
8.2. Informative References...................................26 6.2. WSON Dynamic Node TLV....................................19
9. Contributors..................................................28 6.3. WSON Link TLV............................................20
Authors' Addresses...............................................28 6.4. WSON Dynamic Link TLV....................................20
Intellectual Property Statement..................................29 7. Security Considerations.......................................20
Disclaimer of Validity...........................................30 8. IANA Considerations...........................................20
9. Acknowledgments...............................................21
APPENDIX A: Encoding Examples....................................22
A.1. Wavelength Set Field.....................................22
A.2. Connectivity Matrix Sub-TLV..............................22
A.3. Wavelength Converter Accessibility Sub-TLV...............26
A.4. Wavelength Conversion Range Sub-TLV......................28
10. References...................................................30
10.1. Normative References....................................30
10.2. Informative References..................................30
11. Contributors.................................................32
Authors' Addresses...............................................32
Intellectual Property Statement..................................33
Disclaimer of Validity...........................................34
1. Introduction 1. Introduction
A Wavelength Switched Optical Network (WSON) is a Wavelength Division A Wavelength Switched Optical Network (WSON) is a Wavelength Division
Multiplexing (WDM) optical network in which switching is performed Multiplexing (WDM) optical network in which switching is performed
selectively based on the center wavelength of an optical signal. selectively based on the center wavelength of an optical signal.
[WSON-Frame] describes a framework for Generalized Multiprotocol [WSON-Frame] describes a framework for Generalized Multiprotocol
Label Switching (GMPLS) and Path Computation Element (PCE) control of Label Switching (GMPLS) and Path Computation Element (PCE) control of
a WSON. Based on this framework, [WSON-Info] describes an information a WSON. Based on this framework, [WSON-Info] describes an information
skipping to change at page 4, line 22 skipping to change at page 4, line 34
Clarification of TBD on connection matrix type and possibly Clarification of TBD on connection matrix type and possibly
numbering. numbering.
New sections for wavelength converter pool encoding: Wavelength New sections for wavelength converter pool encoding: Wavelength
Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV,
Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV.
Added optional wavelength converter pool TLVs to the composite node Added optional wavelength converter pool TLVs to the composite node
TLV. TLV.
1.1.2. Changes from 01 draft
The encoding examples have been moved to an appendix. Classified and
corrected information elements as either reusable fields or sub-TLVs.
Updated Port Wavelength Restriction sub-TLV. Added available
wavelength and shared backup wavelength sub-TLVs. Changed the title
and scope of section 6 to recommendations since the higher level TLVs
that this encoding will be used in is somewhat protocol specific.
2. Terminology 2. Terminology
CWDM: Coarse Wavelength Division Multiplexing. CWDM: Coarse Wavelength Division Multiplexing.
DWDM: Dense Wavelength Division Multiplexing. DWDM: Dense Wavelength Division Multiplexing.
FOADM: Fixed Optical Add/Drop Multiplexer. FOADM: Fixed Optical Add/Drop Multiplexer.
ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port
count wavelength selective switching element featuring ingress and count wavelength selective switching element featuring ingress and
skipping to change at page 5, line 5 skipping to change at page 5, line 23
"equivalent" content centered at a different wavelength. Wavelength "equivalent" content centered at a different wavelength. Wavelength
conversion can be implemented via an optical-electronic-optical (OEO) conversion can be implemented via an optical-electronic-optical (OEO)
process or via a strictly optical process. process or via a strictly optical process.
WDM: Wavelength Division Multiplexing. WDM: Wavelength Division Multiplexing.
Wavelength Switched Optical Network (WSON): A WDM based optical Wavelength Switched Optical Network (WSON): A WDM based optical
network in which switching is performed selectively based on the network in which switching is performed selectively based on the
center wavelength of an optical signal. center wavelength of an optical signal.
3. Encoding of WSON Information: Sub-TLVs 3. Common Field Encoding
A TLV encoding of the high level WSON information model [WSON-Info] In encoding WSON information both sets of links and sets of
is given in the following sections. This encoding is designed to be wavelengths frequently arise. In the following we specify the
suitable for use in the GMPLS routing protocols OSPF [RFC4203] and encoding of these repeatedly used fields.
IS-IS [RFC5307] and in the PCE protocol PCEP [PCEP]. Note that the
information distributed in [RFC4203] and [RFC5307] is arranged via
the nesting of sub-TLVs within TLVs and this document makes use of
such constructs.
3.1. Link Set Sub-TLV 3.1. Link Set Field
We will frequently need to describe properties of groups of links. To We will frequently need to describe properties of groups of links. To
do so efficiently we can make use of a link set concept similar to do so efficiently we can make use of a link set concept similar to
the label set concept of [RFC3471]. All links will be denoted by the label set concept of [RFC3471]. All links will be denoted by
their local link identifier as defined an used in [RFC4202], their local link identifier as defined an used in [RFC4202],
[RFC4203], and [RFC5307]. [RFC4203], and [RFC5307].The information carried in a Link Set is
defined by:
The information carried in a Link Set is defined by:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action |Dir| Format | Reserved | | Action |Dir| Format | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Identifier 1 | | Link Identifier 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : : : :
: : : : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Identifier N | | Link Identifier N |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Action: 8 bits Action: 8 bits
0 - Inclusive List 0 - Inclusive List
Indicates that the TLV contains one or more link elements that are Indicates that one or more link identifiers are included in the Link
included in the Link Set. Set. Each identifies a separate link that is part of the set.
2 - Inclusive Range 1 - Inclusive Range
Indicates that the TLV contains a range of links. The object/TLV Indicates that the Link Set defines a range of links. It contains
contains two link elements. The first element indicates the start of two link identifiers. The first identifiers indicates the start of
the range. The second element indicates the end of the range. A value the range (inclusive). The second identifiers indicates the end of
of zero indicates that there is no bound on the corresponding portion the range (inclusive). All links with numeric values between the
of the range. bounds are considered to be part of the set. A value of zero in
either position indicates that there is no bound on the corresponding
portion of the range. Note that the Action field can be set to
0x02(Inclusive Range) only when unnumbered link identifier is used.
Dir: Directionality of the Link Set (2 bits) Dir: Directionality of the Link Set (2 bits)
0 -- bidirectional 0 -- bidirectional
1 -- incoming 1 -- incoming
2 -- outgoing 2 -- outgoing
In optical networks we think in terms of unidirectional as well as In optical networks we think in terms of unidirectional as well as
bidirectional links. For example, wavelength restrictions or bidirectional links. For example, wavelength restrictions or
connectivity may be different for an ingress port, than for its connectivity may be different for an ingress port, than for its
"companion" egress port if one exists. Note that "interfaces" such as "companion" egress port if one exists. Note that "interfaces" such as
those discussed in the Interfaces MIB [RFC2863] are assumed to be those discussed in the Interfaces MIB [RFC2863] are assumed to be
bidirectional. This also applies to the links advertised in various bidirectional. This also applies to the links advertised in various
skipping to change at page 6, line 27 skipping to change at page 7, line 11
connectivity may be different for an ingress port, than for its connectivity may be different for an ingress port, than for its
"companion" egress port if one exists. Note that "interfaces" such as "companion" egress port if one exists. Note that "interfaces" such as
those discussed in the Interfaces MIB [RFC2863] are assumed to be those discussed in the Interfaces MIB [RFC2863] are assumed to be
bidirectional. This also applies to the links advertised in various bidirectional. This also applies to the links advertised in various
link state routing protocols. link state routing protocols.
Format: The format of the link identifier (6 bits) Format: The format of the link identifier (6 bits)
0 -- Link Local Identifier 0 -- Link Local Identifier
Indicates that the links in the Link Set are identified by link local
identifiers. All link local identifiers are supplied in the context
of the advertising node.
1 -- Local Interface IPv4 Address
2 -- Local Interface IPv6 Address
Indicates that the links in the Link Set are identified by Local
Interface IP Address. All Local Interface IP Address are supplied in
the context of the advertising node.
Others TBD. Others TBD.
Note that all link identifiers in the same list must be of the same Note that all link identifiers in the same list must be of the same
type. type.
Reserved: 16 bits Length: 16 bits
This field is reserved. It MUST be set to zero on transmission and This field indicates the total length of the Link Set field.
MUST be ignored on receipt.
Link Identifier: Link Identifier: length is dependent on the link format
The link identifier represents the port which is being described The link identifier represents the port which is being described
either for connectivity or wavelength restrictions. This can be the either for connectivity or wavelength restrictions. This can be the
link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS
OSPF routing, and [RFC5307] IS-IS GMPLS routing. The use of the link OSPF routing, and [RFC5307] IS-IS GMPLS routing. The use of the link
local identifier format can result in more compact WSON encodings local identifier format can result in more compact WSON encodings
when the assignments are done in a reasonable fashion. when the assignments are done in a reasonable fashion.
3.2. Connectivity Matrix Sub-TLV 3.2. Wavelength Information Encoding
The switch and fixed connectivity matrices of [WSON-Info] can be
compactly represented in terms of a minimal list of ingress and
egress port set pairs that have mutual connectivity. As described in
[Switch] such a minimal list representation leads naturally to a
graph representation for path computation purposes that involves the
fewest additional nodes and links.
A TLV encoding of this list of link set pairs is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Connectivity | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Set A #1 |
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Set B #1 :
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Link set pairs as needed |
: to specify connectivity :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Connectivity = 0 if the device is fixed
1 if the device is switched(e.g., ROADM/OXC)
TBD: Should we just have two sub-TLVs one for fixed one for switched,
or should we number matrices for a more general solution.
Example:
Suppose we have a typical 2-degree 40 channel ROADM. In addition to
its two line side ports it has 80 add and 80 drop ports. The picture
below illustrates how a typical 2-degree ROADM system that works with
bi-directional fiber pairs is a highly asymmetrical system composed
of two unidirectional ROADM subsystems.
(Tributary) Ports #3-#42
Ingress added to Egress dropped from
West Line Egress East Line Ingress
vvvvv ^^^^^
| |||.| | |||.|
+-----| |||.|--------| |||.|------+
| +----------------------+ |
| | | |
Egress | | Unidirectional ROADM | | Ingress
-----------------+ | | +--------------
<=====================| |===================<
-----------------+ +----------------------+ +--------------
| |
Port #1 | | Port #2
(West Line Side) | |(East Line Side)
-----------------+ +----------------------+ +--------------
>=====================| |===================>
-----------------+ | Unidirectional ROADM | +--------------
Ingress | | | | Egress
| | _ | |
| +----------------------+ |
+-----| |||.|--------| |||.|------+
| |||.| | |||.|
vvvvv ^^^^^
(Tributary) Ports #43-#82
Egress dropped from Ingress added to
West Line ingress East Line egress
Referring to the figure we see that the ingress direction of ports
#3-#42 (add ports) can only connect to the egress on port #1. While
the ingress side of port #2 (line side) can only connect to the
egress on ports #3-#42 (drop) and to the egress on port #1 (pass
through). Similarly, the ingress direction of ports #43-#82 can only
connect to the egress on port #2 (line). While the ingress direction
of port #1 can only connect to the egress on ports #43-#82 (drop) or
port #2 (pass through). We can now represent this potential
connectivity matrix as follows. This representation uses only 30 32-
bit words.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Conn = 1 | Reserved |1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: adds to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 |3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |4
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |6
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to drops
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|9
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 |10
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |11
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |12
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |13
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|14
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: adds to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |16
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |17
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #82 |18
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |19
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |20
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to drops
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |21
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |22
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|23
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #43 |24
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #82 |25
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |26
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |27
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|28
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |30
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.3. Wavelength Information Encoding
This document makes frequent use of the lambda label format defined This document makes frequent use of the lambda label format defined
in [Otani] shown below strictly for reference purposes: in [Otani] shown below strictly for reference purposes:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n | |Grid | C.S. | Reserved | n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Where
skipping to change at page 11, line 9 skipping to change at page 8, line 22
Grid is used to indicate which ITU-T grid specification is being Grid is used to indicate which ITU-T grid specification is being
used. used.
C.S. = Channel spacing used in a DWDM system, i.e., with a ITU-T C.S. = Channel spacing used in a DWDM system, i.e., with a ITU-T
G.694.1 grid. G.694.1 grid.
n = Used to specify the frequency as 193.1THz +/- n*(channel spacing) n = Used to specify the frequency as 193.1THz +/- n*(channel spacing)
and n is an integer to take either a negative, zero or a positive and n is an integer to take either a negative, zero or a positive
value. value.
3.4. Wavelength Set Sub-TLV 3.3. Wavelength Set Field
Wavelength sets come up frequently in WSONs to describe the range of Wavelength sets come up frequently in WSONs to describe the range of
a laser transmitter, the wavelength restrictions on ROADM ports, or a laser transmitter, the wavelength restrictions on ROADM ports, or
the availability of wavelengths on a DWDM link. The general format the availability of wavelengths on a DWDM link. The general format
for a wavelength set is given below. This format uses the Action for a wavelength set is given below. This format uses the Action
concept from [RFC3471] with an additional Action to define a "bit concept from [RFC3471] with an additional Action to define a "bit
map" type of label set. Note that the second 32 bit field is a lambda map" type of label set. Note that the second 32 bit field is a lambda
label in the previously defined format. This provides important label in the previously defined format. This provides important
information on the WDM grid type and channel spacing that will be information on the WDM grid type and channel spacing that will be
used in the compact encodings listed. used in the compact encodings listed.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action | Reserved | Num Wavelengths | | Action| Num Wavelengths | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency | |Grid | C.S. | Reserved | n for lowest frequency |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional fields as necessary per action | | Additional fields as necessary per action |
| |
Action: Action:
0 - Inclusive List 0 - Inclusive List
skipping to change at page 11, line 36 skipping to change at page 9, line 4
|Grid | C.S. | Reserved | n for lowest frequency | |Grid | C.S. | Reserved | n for lowest frequency |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional fields as necessary per action | | Additional fields as necessary per action |
| |
Action: Action:
0 - Inclusive List 0 - Inclusive List
1 - Exclusive List 1 - Exclusive List
2 - Inclusive Range 2 - Inclusive Range
3 - Exclusive Range 3 - Exclusive Range
4 - Bitmap Set 4 - Bitmap Set
3.4.1. Inclusive/Exclusive Wavelength Lists 3.3.1. Inclusive/Exclusive Wavelength Lists
In the case of the inclusive/exclusive lists the wavelength set In the case of the inclusive/exclusive lists the wavelength set
format is given by: format is given by:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Action=0 or 1 | Reserved | Num Wavelengths | |0 or 1 | Num Wavelengths | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency | |Grid | C.S. | Reserved | n for lowest frequency |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| n2 | n3 | | n2 | n3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| nm | | | nm | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Num Wavelengths tells us the number of wavelength in this Where Num Wavelengths tells us the number of wavelength in this
inclusive or exclusive list this does not include the initial inclusive or exclusive list this does not include the initial
wavelength in the list hence if the number of wavelengths is odd then wavelength in the list hence if the number of wavelengths is odd then
zero padding of the last half word is required. zero padding of the last half word is required.
3.4.2. Inclusive/Exclusive Wavelength Ranges 3.3.2. Inclusive/Exclusive Wavelength Ranges
In the case of inclusive/exclusive ranges the wavelength set format In the case of inclusive/exclusive ranges the wavelength set format
is given by: is given by:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Action=2 or 3 | Reserved | Num Wavelengths | |2 or 3 | Num Wavelengths | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency | |Grid | C.S. | Reserved | n for lowest frequency |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case Num Wavelengths specifies the number of wavelengths in In this case Num Wavelengths specifies the number of wavelengths in
the range starting at the given wavelength and incrementing the Num the range starting at the given wavelength and incrementing the Num
Wavelengths number of channel spacing up in frequency. Wavelengths number of channel spacing up in frequency.
3.4.3. Bitmap Wavelength Set 3.3.3. Bitmap Wavelength Set
In the case of Action = 4, the bitmap the wavelength set format is In the case of Action = 4, the bitmap the wavelength set format is
given by: given by:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action = 4 | Reserved | Num Wavelengths | | 4 | Num Wavelengths | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency | |Grid | C.S. | Reserved | n for lowest frequency |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Bit Map Word #1 (Lowest frequency channels) | | Bit Map Word #1 (Lowest frequency channels) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Bit Map Word #N (Highest frequency channels) | | Bit Map Word #N (Highest frequency channels) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
skipping to change at page 13, line 32 skipping to change at page 10, line 40
frequency is in the set or not. Bit position zero represents the frequency is in the set or not. Bit position zero represents the
lowest frequency, while each succeeding bit position represents the lowest frequency, while each succeeding bit position represents the
next frequency a channel spacing (C.S.) above the previous. next frequency a channel spacing (C.S.) above the previous.
The size of the bit map is clearly Num Wavelengths bits, but the bit The size of the bit map is clearly Num Wavelengths bits, but the bit
map is made up to a full multiple of 32 bits so that the TLV is a map is made up to a full multiple of 32 bits so that the TLV is a
multiple of four bytes. Bits that do not represent wavelengths (i.e., multiple of four bytes. Bits that do not represent wavelengths (i.e.,
those in positions (Num Wavelengths - 1) and beyond) SHOULD be set to those in positions (Num Wavelengths - 1) and beyond) SHOULD be set to
zero and MUST be ignored. zero and MUST be ignored.
Example: 4. Wavelength and Connectivity sub-TLV Encodings
A 40 channel C-Band DWDM system with 100GHz spacing with lowest A type-length-value (TLV) encoding of the high level WSON information
frequency 192.0THz (1561.4nm) and highest frequency 195.9THz model [WSON-Info] is given in the following sections. This encoding
(1530.3nm). These frequencies correspond to n = -11, and n = 28 is designed to be suitable for use in the GMPLS routing protocols
respectively. Now suppose the following channels are available: OSPF [RFC4203] and IS-IS [RFC5307] and in the PCE protocol PCEP
[PCEP]. Note that the information distributed in [RFC4203] and
[RFC5307] is arranged via the nesting of sub-TLVs within TLVs and
this document makes use of such constructs.
Frequency (THz) n Value bit map position 4.1. Available Wavelengths Sub-TLV
--------------------------------------------------
192.0 -11 0
192.5 -6 5
193.1 0 11
193.9 8 19
194.0 9 20
195.2 21 32
195.8 27 38
With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S. To indicate the wavelengths available for use on a link the Available
set to indicate 100GHz this lambda bit map set would then be encoded Wavelengths sub-TLV consists of a single variable length wavelength
as follows: set field as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action = 4 | Reserved | Num Wavelengths = 40 | | Wavelength Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = -11 |
4.2. Shared Backup Wavelengths Sub-TLV
To indicate the wavelengths available for shared backup use on a link
the Shared Backup Wavelengths sub-TLV consists of a single variable
length wavelength set field as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| | Wavelength Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) |
4.3. Connectivity Matrix Sub-TLV
The switch and fixed connectivity matrices of [WSON-Info] can be
compactly represented in terms of a minimal list of ingress and
egress port set pairs that have mutual connectivity. As described in
[Switch] such a minimal list representation leads naturally to a
graph representation for path computation purposes that involves the
fewest additional nodes and links.
A TLV encoding of this list of link set pairs is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Connectivity | MatrixID | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Set A #1 |
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Set B #1 :
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Link set pairs as needed |
: to specify connectivity :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.5. Port Wavelength Restriction sub-TLV Where
Connectivity is the device type.
0 -- the device is fixed
1 -- the device is switched(e.g., ROADM/OXC)
MatrixID represents the ID of the connectivity matrix and is an 8 bit
integer. The value of 0xFF is reserved for use with port wavelength
constraints and should not be used to identify a connectivity matrix.
4.4. Port Wavelength Restriction sub-TLV
The port wavelength restriction of [WSON-Info] can be encoded as a The port wavelength restriction of [WSON-Info] can be encoded as a
sub-TLV as follows. sub-TLV as follows. More than one of these sub-TLVs may be needed to
fully specify a complex port constraint. When more than one of these
sub-TLVs are present the resulting restriction is the intersection of
the restrictions expressed in each sub-TLV. To indicate that a
restriction applies to the port in general and not to a specific
connectivity matrix use the reserved value of 0xFF for the MatrixID.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|RestrictionKind|T| Reserved | MaxNumChannels | | MatrixID | RestrictionType | Reserved/Parameter |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
--Wavelength Set-- | Additional Restriction Parameters per RestrictionType |
| Action | Reserved | Num Wavelengths | : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency |
Where:
MatrixID: either is the value in the corresponding Connectivity
Matrix sub-TLV or takes the value OxFF to indicate the restriction
applies to the port regardless of any Connectivity Matrix.
RestrictionType can take the following values and meanings:
0: SIMPLE_WAVELENGTH (Simple wavelength selective restriction)
1: CHANNEL_COUNT (Channel count restriction)
2: WAVEBAND1 (Waveband device with a tunable center frequency
and passband)
3: SIMPLE_WAVELENGTH & CHANNEL_COUNT (Combination of
SIMPLE_WAVELENGTH and CHANNEL_COUNT restriction. The
accompanying wavelength set and channel count indicate
wavelength permitted on the port and the maximum number of
channels that can be simultaneously used on the port)
4.4.1. SIMPLE_WAVELENGTH
In the case of the SIMPLE_WAVELENGTH the GeneralPortRestrictions (or
MatrixSpecificRestrictions) format is given by:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional fields as necessary per action | | MatrixID | RstType = 0 | Reserved |
| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Wavelength Set Field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case the accompanying wavelength set indicates the
wavelengths permitted on the port.
RestrictionKind can take the following values and meanings: 4.4.2. CHANNEL_COUNT
0: Simple wavelength selective restriction. Max number of channels In the case of the CHANNEL_COUNT the format is given by:
indicates the number of wavelengths permitted on the port and the
accompanying wavelength set indicates the permitted values.
1: Waveband device with a tunable center frequency and passband. In 0 1 2 3
this case the maximum number of channels indicates the maximum width 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
of the waveband in terms of the channels spacing given in the +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 1 | MaxNumChannels |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case the accompanying MaxNumChannels indicates the maximum
number of channels that can be simultaneously used on the
port/matrix.
4.4.3. WAVEBAND1
In the case of the WAVEBAND1 the GeneralPortRestrictions (or
MatrixSpecificRestrictions) format is given by:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixID | RstType = 2 | MaxWaveBandWidth |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Wavelength Set |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In this case the accompanying MaxWaveBandWidth indicates the maximum
width of the waveband in terms of the channels spacing given in the
wavelength set. The corresponding wavelength set is used to indicate wavelength set. The corresponding wavelength set is used to indicate
the overall tuning range. Specific center frequency tuning the overall tuning range. Specific center frequency tuning
information can be obtained from dynamic channel in use information. information can be obtained from dynamic channel in use information.
It is assumed that both center frequency and bandwidth (Q) tuning can It is assumed that both center frequency and bandwidth (Q) tuning can
be done without causing faults in existing signals. be done without causing faults in existing signals.
Values for T include: 4.4.4. SIMPLE_WAVELENGTH & CHANNEL_COUNT
0 == Use with a fixed connectivity matrix In the case of the SIMPLE_WAVELENGTH & CHANNEL_COUNT the format is
given by:
1 == Use with a switched connectivity matrix 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MatrixInfo | RstType = 3 | MaxNumChannels |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Wavelength Set Field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
TBD: Should we just have two flavors of sub-TLV, or if we add In this case the accompanying wavelength set and MaxNumChannels
numbering to identify matrices we could add a number field here indicate wavelength permitted on the port and the maximum number of
(using currently reserved bits) to associate the constraints with the channels that can be simultaneously used on the port.
right matrix.
3.6. Wavelength Converter Set Sub-TLV 5. Wavelength Converter Pool Encoding
A WSON node may include a set of wavelength converters (WC). We need The encoding of structure and properties of a general wavelength
to describe the WC list which a node supports. This can be done via a converter pool utilizes a converter accessibility sub-TLV, a
WC Set concept similar to the label set concept of [RFC3471]. wavelength converter range sub-TLV, and a wavelength converter state
sub-TLV. All these sub-TLVs make use of the wavelength converter set
field.
5.1. Wavelength Converter Set Field
A WSON node may include a set of wavelength converters (WC) and such
information frequently is used in describing the wavelength converter
pool and its properties. The WC Set field is defined in a similar
manner to the label set concept of [RFC3471].
The information carried in a WC set field is defined by:
The information carried in a WC set is defined by:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action | Reserved | | Action | Reserved | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Identifier 1 | WC Identifier 2 | | WC Identifier 1 | WC Identifier 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Identifier n-1 | WC Identifier n | | WC Identifier n-1 | WC Identifier n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Action: 8 bits Action: 8 bits
skipping to change at page 16, line 33 skipping to change at page 16, line 15
included in the list. included in the list.
2 - Inclusive Range 2 - Inclusive Range
Indicates that the TLV contains a range of WCs. The object/TLV Indicates that the TLV contains a range of WCs. The object/TLV
contains two WC elements. The first element indicates the start of contains two WC elements. The first element indicates the start of
the range. The second element indicates the end of the range. A value the range. The second element indicates the end of the range. A value
of zero indicates that there is no bound on the corresponding portion of zero indicates that there is no bound on the corresponding portion
of the range. of the range.
Reserved: 24 bits Reserved: 8 bits
This field is reserved. It MUST be set to zero on transmission and This field is reserved. It MUST be set to zero on transmission and
MUST be ignored on receipt. MUST be ignored on receipt.
Length: 16 bits
The total length of this field in bytes.
WC Identifier: WC Identifier:
The WC identifier represents the ID of the wavelength convertor which The WC identifier represents the ID of the wavelength convertor which
is a 16 bit integer. is a 16 bit integer.
3.7. Wavelength Converter Accessibility Sub-TLV 5.2. Wavelength Converter Accessibility Sub-TLV
A WSON node may include wavelength converters. As described in [WSON- This sub-TLV describes the structure of the wavelength converter pool
Info], we should give the accessibility of a wavelength converter to in relation to the switching device. In particular it gives the
convert from a given ingress wavelength on a particular ingress ability of an ingress port to reach a wavelength converter and of a
port to a desired egress wavelength on a particular egress port. wavelength converter to reach a particular egress port. This is the
Before this, we need to describe the accessibility of a wavelength PoolIngressMatrix and PoolEgressMatrix of [WSON-Info].
converter to convert form a given ingress port to a desired egress
port. This information can be determined by the PoolIngressMatrix and
PoolEgressMatrix of [WSON-Info]. We can use a set of links (Link set)
followed by a set of WCs (WC set) to represent that this link set can
access this WC set. We use a set of WC (WC set) followed by a set of
links (Link set) to represent that this WC set can access this link
set.
The wavelength converter accessibility TLV is defined by: The wavelength converter accessibility sub-TLV is defined by:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num In Pairs | Reserved | | Ingress Link Set Field A #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : :
| Ingress Link Set A #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Set A #1 | | WC Set Field A #1 |
: : : : :
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Link set and WC set pairs as needed to | | Additional Link set and WC set pairs as needed to |
: specify PoolIngressMatrix : : specify PoolIngressMatrix :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Set B #1 (for egress connectivity) | | WC Set B Field #1 (for egress connectivity) |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress link Set B #1 | | Egress link Set Field B #1 |
: : : : :
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional WC set and egress link set pairs | | Additional WC set and egress link set pairs |
: as needed to specify PoolEgressMatrix : : as needed to specify PoolEgressMatrix :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Num_In_Pairs tells us the number of ingress link and WC set Note that the direction parameter within the Link Set Field is used
pairs. TBD: if link sets are identified in their own sub-TLVs and to indicate whether the link set is an ingress or egress link set.
similarly for WC sets then we may not need this field.
5.3. Wavelength Conversion Range Sub-TLV
Wavelength converters may have a limited input or output range.
Additionally, due to the structure of the optical system not all
wavelengths can necessarily reach or leave all the converters. These
properties are described by using one or more wavelength conversion
sub-TLVs as defined below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Wavelength Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Wavelength Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
WC Set Field:
A set of wavelength converters (WCs) which have the same conversion
range.
Input Wavelength Set Field:
Indicates the wavelength input range of the WCs in the corresponding
WC set.
Output Wavelength Set Field:
Indicates the wavelength output range of WCs in the corresponding WC
set.
5.4. Wavelength Converter Usage State Sub-TLV
The usage state of a wavelength converter is encoded as a bit map
indicating whether the converter is available or in use. This
information can be relatively dynamic, i.e., can change when a
connection is established or torn down. This bit map is in
correspondence with a wavelength converter set as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Usage state bitmap |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...... | Padding bits |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
WC Usage state: Variable Length but must be a multiple of 4 byes.
Each bit indicates the usage status of one WC with 0 indicating the
WC is available and 1 indicating the WC is in used. The sequence of
the bit map is ordered according to the WC Set field with this sub-
TLV.
Padding bits: Variable Length
6. WSON Encoding Usage Recommendations
In this section we give recommendations of typical usage of the
previously defined sub-TLVs. Typically the sub-TLVs defined in the
preceding sections would be incorporated into some kind of composite
TLV. The example composite TLVs in the following sections are based
on the four high level information bundles of [WSON-Info].
6.1. WSON Node TLV
The WSON Node TLV could consist of the following list of sub-TLVs:
<Node_Info> ::= <Node_ID>[Other GMPLS sub-
TLVs][<ConnectivityMatrix>...]
[<WavelengthConverterPool>][<WCPoolState>]
6.2. WSON Dynamic Node TLV
If the protocol supports the separation of dynamic information from
relatively static information then the wavelength converter pool
state can be separated from the general Node TLV into a dynamic Node
TLV as follows.
<NodeInfoDynamic> ::= <NodeID> [<WCPoolState>]
Note that currently the only dynamic information modeled with a node
is associated with the status of the wavelength converter pool.
6.3. WSON Link TLV
The new link related sub-TLVs could be incorporated into a composite
link TLV as follows:
<LinkInfo> ::= <LinkID> [Other GMPLS sub-TLVs]
<[PortWavelengthRestriction>...][<AvailableWavelengths>]
[<SharedBackupWavelengths>]
6.4. WSON Dynamic Link TLV
If the protocol supports the separation of dynamic information from
relatively static information then the available wavelength and
shared backup status can be separated from the general link TLV into
a TLV for dynamic link information.
<DynamicLinkInfo> ::= <LinkID> <AvailableWavelengths>
[<SharedBackupWavelengths>]
Where
<LinkID> ::= <LocalLinkID> <LocalNodeID> <RemoteLinkID>
<RemoteNodeID>
7. Security Considerations
This document defines protocol-independent encodings for WSON
information and does not introduce any security issues.
However, other documents that make use of these encodings within
protocol extensions need to consider the issues and risks associated
with, inspection, interception, modification, or spoofing of any of
this information. It is expected that any such documents will
describe the necessary security measures to provide adequate
protection.
8. IANA Considerations
TBD. Once our approach is finalized we may need identifiers for the
various TLVs and sub-TLVs.
9. Acknowledgments
This document was prepared using 2-Word-v2.0.template.dot.
APPENDIX A: Encoding Examples
[Editors note: these examples will be revised once the changes to the
encodings settle down.]
A.1. Wavelength Set Field
Example:
A 40 channel C-Band DWDM system with 100GHz spacing with lowest
frequency 192.0THz (1561.4nm) and highest frequency 195.9THz
(1530.3nm). These frequencies correspond to n = -11, and n = 28
respectively. Now suppose the following channels are available:
Frequency (THz) n Value bit map position
--------------------------------------------------
192.0 -11 0
192.5 -6 5
193.1 0 11
193.9 8 19
194.0 9 20
195.2 21 32
195.8 27 38
With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S.
set to indicate 100GHz this lambda bit map set would then be encoded
as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4 | Num Wavelengths = 40 | Length = 16 bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = -11 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.2. Connectivity Matrix Sub-TLV
Example:
Suppose we have a typical 2-degree 40 channel ROADM. In addition to
its two line side ports it has 80 add and 80 drop ports. The picture
below illustrates how a typical 2-degree ROADM system that works with
bi-directional fiber pairs is a highly asymmetrical system composed
of two unidirectional ROADM subsystems.
(Tributary) Ports #3-#42
Ingress added to Egress dropped from
West Line Egress East Line Ingress
vvvvv ^^^^^
| |||.| | |||.|
+-----| |||.|--------| |||.|------+
| +----------------------+ |
| | | |
Egress | | Unidirectional ROADM | | Ingress
-----------------+ | | +--------------
<=====================| |===================<
-----------------+ +----------------------+ +--------------
| |
Port #1 | | Port #2
(West Line Side) | |(East Line Side)
-----------------+ +----------------------+ +--------------
>=====================| |===================>
-----------------+ | Unidirectional ROADM | +--------------
Ingress | | | | Egress
| | _ | |
| +----------------------+ |
+-----| |||.|--------| |||.|------+
| |||.| | |||.|
vvvvv ^^^^^
(Tributary) Ports #43-#82
Egress dropped from Ingress added to
West Line ingress East Line egress
Referring to the figure we see that the ingress direction of ports
#3-#42 (add ports) can only connect to the egress on port #1. While
the ingress side of port #2 (line side) can only connect to the
egress on ports #3-#42 (drop) and to the egress on port #1 (pass
through). Similarly, the ingress direction of ports #43-#82 can only
connect to the egress on port #2 (line). While the ingress direction
of port #1 can only connect to the egress on ports #43-#82 (drop) or
port #2 (pass through). We can now represent this potential
connectivity matrix as follows. This representation uses only 30 32-
bit words.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Conn = 1 | MatrixID | Reserved |1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: adds to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 |3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |4
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |6
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to drops
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |8
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|9
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #3 |10
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |11
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |12
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |13
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|14
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: adds to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |16
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #42 |17
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #82 |18
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |19
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |20
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to drops
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |21
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |22
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|23
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #43 |24
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #82 |25
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: line to line
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |26
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |27
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|28
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |30
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.3. Wavelength Converter Accessibility Sub-TLV
Example: Example:
Figure 1 shows a wavelength converter pool architecture know as Figure 1 shows a wavelength converter pool architecture know as
"shared per fiber". In this case the ingress and egress pool matrices "shared per fiber". In this case the ingress and egress pool matrices
are simply: are simply:
+-----+ +-----+ +-----+ +-----+
| 1 1 | | 1 0 | | 1 1 | | 1 0 |
WI =| |, WE =| | WI =| |, WE =| |
skipping to change at page 19, line 43 skipping to change at page 28, line 43
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 | Reserved(Note: inclusive WC list) | | Action=0 | Reserved(Note: inclusive WC list) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC ID = #2 | zero padding | | WC ID = #2 | zero padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive list) | | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive list) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #4 | | Link Local Identifier = #4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.8. Wavelength Conversion Range Sub-TLV A.4. Wavelength Conversion Range Sub-TLV
Since not all wavelengths can necessarily reach all the converters or
the converters may have limited input wavelength range we can have a
set of ingress wavelength constraints for each wavelength converter.
In addition, we also can have output wavelength constraints.
The information carried in a wavelength conversion range Sub-TLV is
defined by:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Set #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Wavelength Set #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Wavelength Set #1 |
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional WC Wavelength constraint set pairs as needed |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
WC Set:
Indicates the WCs which have the same conversion range. We group the
WCs which have the same conversion range to WC Set followed by the
input and output wavelength range for reducing the data size.
The format of WC Set is consistent with the encoding of "WC Set Sub-
TLV".
Input Wavelength Set:
Indicates the wavelength input range of WC(s).
The format of Input Wavelength Set is consistent with the encoding of
"Wavelength Set Sub-TLV".
Output Wavelength Set:
Indicates the wavelength output range of WC(s).
The format of Output Wavelength Set is consistent with the encoding
of "Wavelength Set Sub-TLV".
Example: Example:
We give an example based on figure 1 about how to represent the We give an example based on figure 1 about how to represent the
wavelength conversion range of wavelength converters. Suppose the wavelength conversion range of wavelength converters. Suppose the
wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, wavelength range of input and output of WC1 and WC2 are {L1, L2, L3,
L4}: L4}:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
skipping to change at page 21, line 36 skipping to change at page 30, line 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 1 | |Grid | C.S. | Reserved | n for lowest frequency = 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: wavelength output range Note: wavelength output range
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action = 2 | Reserved | Num Wavelengths = 4 | | Action = 2 | Reserved | Num Wavelengths = 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 1 | |Grid | C.S. | Reserved | n for lowest frequency = 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.9. WC Usage State Sub-TLV 10. References
WC Usage state dependents upon whether the wavelength converter in
the pool is in use. This is the only state kept in the converter pool
model.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Set sub-TLV |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC Usage state |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...... | Padded bits |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
WC Usage state can be encoded by bit map. The bits indicate the usage
state of the wavelength convertors which is being described in the WC
Set sub-TLV.
WC Usage state: : Variable Length.
Each bit indicates the usage status of one WC. The sequence of the
bit map is consistent with the WC list in this TLV.
Padded bit: Variable Length
It is used to pad the bit to make the whole number of bits in bitmap
be the time of 32. Padded bit MUST be set to 0.
4. Composite TLVs
The Four composite TLVs in the following sections are based on the
four high level information bundles of [WSON-Info].
4.1. WSON Node TLV
The WSON Node TLV consists of the following ordered list of sub-TLVs:
<Node_Info> ::= <Node_ID> [<SwitchedConnectivityMatrix>]
[<FixedConnectivityMatrix>], [<SRNG>] [<WavelengthConverterPool>]
o Node ID (This will be derived from standard IETF node identifiers)
o Switch Connectivity Matrix - (optional) This is a connectivity
matrix sub-TLV with the connectivity type set to "switched" (conn
= 1)
o Fixed Connectivity Matrix - (optional) This is a connectivity
matrix sub-TLV with the connectivity type set to "fixed" (conn =
0).
o Shared Risk Node Group - (optional) Format TBD (note that current
GMPLS SRLG encoding is general enough to include SRNG
information).
o Wavelength Converter Pool TLVs- (optional) Wavelength Converter
Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, and
Wavelength Conversion Range Sub-TLV.
4.2. WSON Link TLV
Note that a number of sub-TLVs for links have already been defined
and it is for further study if we can or should reuse any of those
sub-TLVs in our encoding. Note that for a system already employing
GMPLS based routing the existing encodings and transport mechanisms
should be used and the information does not need to appear twice.
<LinkInfo> ::= <LinkID> [<AdministrativeGroup>] [<InterfaceCapDesc>]
[<Protection>] [<SRLG>]... [<TrafficEngineeringMetric>]
[<MaximumBandwidthPerChannel>] <[SwitchedPortWavelengthRestriction>]
[<FixedPortWavelengthRestriction>]
o Link Identifier - Need to double check on this with RFC4203
(required).
o Administrative Group - (optional) Standard sub-TLV type 9,
RFC3630.
o Interface Switching Capability Descriptor - Standard sub-TLV type
15, RFC4203.
o Protection - (optional) Standard sub-TLV type 15, RFC4203.
o Shared Risk Link Group - (optional) Standard sub-TLV 16, RFC4203.
o Traffic Engineering Metric - (optional) Standard sub-TLV type 5,
RFC3630.
o Maximum Bandwidth per Channel - TBD.
o Switched Port Wavelength Restriction - (optional) The port
wavelength restriction sub-TLV with T = 1.
o Fixed Port Wavelength Restriction - (optional) The port wavelength
restriction sub-TLV with T = 0.
4.3. WSON Dynamic Link TLV
<DynamicLinkInfo> ::= <LinkID> <AvailableWavelengths>
[<SharedBackupWavelengths>]
Where
<LinkID> ::= <LocalLinkID> <LocalNodeID> <RemoteLinkID>
<RemoteNodeID>
o Available Wavelengths - A wavelength set sub-TLV used to indicate
which wavelengths are available on this link.
o Shared Backup Wavelengths - (optional) A wavelength set sub-TLV
used to indicate which wavelengths on this link are currently used
for shared backup protection (and hence can possibly be reused).
4.4. WSON Dynamic Node TLV
<NodeInfoDynamic> ::= <NodeID> [<WCPoolState>]
o Node ID - Format TBD.
o Wavelength Converter Pool Status - (optional) This is the WC Usage
state sub-TLV.
Note that currently the only dynamic information modeled with a node
is associated with the status of the wavelength converter pool.
5. Security Considerations
This document defines protocol-independent encodings for WSON
information and does not introduce any security issues.
However, other documents that make use of these encodings within
protocol extensions need to consider the issues and risks associated
with, inspection, interception, modification, or spoofing of any of
this information. It is expected that any such documents will
describe the necessary security measures to provide adequate
protection.
6. IANA Considerations
TBD. Once our approach is finalized we may need identifiers for the
various TLVs and sub-TLVs.
7. Acknowledgments
This document was prepared using 2-Word-v2.0.template.dot.
8. References
8.1. Normative References 10.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997. Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
MIB", RFC 2863, June 2000. MIB", RFC 2863, June 2000.
[RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching
(GMPLS) Signaling Functional Description", RFC 3471, (GMPLS) Signaling Functional Description", RFC 3471,
January 2003. January 2003.
skipping to change at page 26, line 30 skipping to change at page 30, line 30
applications: DWDM frequency grid", June, 2002. applications: DWDM frequency grid", June, 2002.
[RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions
in Support of Generalized Multi-Protocol Label Switching in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 4202, October 2005 (GMPLS)", RFC 4202, October 2005
[RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in
Support of Generalized Multi-Protocol Label Switching Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 4203, October 2005. (GMPLS)", RFC 4203, October 2005.
[Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 10.2. Informative References
Labels for G.694 Lambda-Switching Capable Label Switching
Routers", work in progress: draft-ietf-ccamp-gmpls-g-694-
lambda-labels-03.txt.
8.2. Informative References
[G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM
applications: DWDM frequency grid, June 2002. applications: DWDM frequency grid, June 2002.
[G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM
applications: CWDM wavelength grid, December 2003. applications: CWDM wavelength grid, December 2003.
[Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized
Labels for G.694 Lambda-Switching Capable Label Switching
Routers", work in progress: draft-ietf-ccamp-gmpls-g-694-
lambda-labels.
[RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions
in Support of Generalized Multi-Protocol Label Switching in Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 5307, October 2008. (GMPLS)", RFC 5307, October 2008.
[Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling
WDM Wavelength Switching Systems for use in Automated Path WDM Wavelength Switching Systems for Use in GMPLS and Automated
Computation", http://www.grotto- Path Computation", Journal of Optical Communications and
networking.com/wson/ModelingWSONswitchesV2a.pdf , June, 2008 Networking, vol. 1, June, 2009, pp. 187-195.
[WSON-Frame] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS [WSON-Frame] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS
and PCE Control of Wavelength Switched Optical Networks", and PCE Control of Wavelength Switched Optical Networks",
work in progress: draft-ietf-ccamp-wavelength-switched- work in progress: draft-ietf-ccamp-wavelength-switched-
framework-01.txt, July 2008. framework, Marh 2009.
[WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and
Wavelength Assignment Information Model for Wavelength Wavelength Assignment Information Model for Wavelength
Switched Optical Networks", work in progress: draft-ietf- Switched Optical Networks", work in progress: draft-ietf-
ccamp-rwa-info-01.txt, October 2008. ccamp-rwa-info, March 2009.
[PCEP] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation [PCEP] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
Element (PCE) communication Protocol (PCEP) - Version 1", Element (PCE) communication Protocol (PCEP) - Version 1",
draft-ietf-pce-pcep, work in progress. RFC5440.
9. Contributors 11. Contributors
Diego Caviglia Diego Caviglia
Ericsson Ericsson
Via A. Negrone 1/A 16153 Via A. Negrone 1/A 16153
Genoa Italy Genoa Italy
Phone: +39 010 600 3736 Phone: +39 010 600 3736
Email: diego.caviglia@(marconi.com, ericsson.com) Email: diego.caviglia@(marconi.com, ericsson.com)
Anders Gavler Anders Gavler
 End of changes. 78 change blocks. 
515 lines changed or deleted 606 lines changed or added

This html diff was produced by rfcdiff 1.35. The latest version is available from http://tools.ietf.org/tools/rfcdiff/